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Density estimation

Density estimation

Observe what we have done indirectly for clustering with GMMs is:

Given a training set x1, . . . ,xN , estimate a density function p that

could have generated this dataset (via xn
i.i.d.∼ p).

This is exactly the problem of density estimation, another important
unsupervised learning problem.

Useful for many downstream applications

we have seen clustering already, will see more today

these applications also provide a way to measure quality of the density
estimator
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Density estimation Parametric methods

Parametric methods: generative models

Parametric estimation assumes a generative model parametrized by θ:

p(x) = p(x ;θ)

Examples:

GMM: p(x ;θ) =
∑K

k=1 ωkN(x | µk,Σk) where θ = {ωk,µk,Σk}

Multinomial: a discrete variable with values in {1, 2, . . . ,K} s.t.

p(x = k ;θ) = θk

where θ is a distribution over K elements.

Size of θ is independent of the training set size, so it’s parametric.
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Density estimation Parametric methods

Parametric methods: estimation

Again, we apply MLE to learn the parameters θ:

argmax
θ

N∑
n=1

ln p(xn ;θ)

For some cases this is intractable and we can use EM to approximately
solve MLE (e.g. GMMs).

For some other cases this admits a simple closed-form solution (e.g.
multinomial).
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Density estimation Parametric methods

MLE for multinomial

The log-likelihood is

N∑
n=1

ln p(x = xn ;θ) =

N∑
n=1

ln θxn

=

K∑
k=1

∑
n:xn=k

ln θk =

K∑
k=1

zk ln θk

where zk = |{n : xn = k}| is the number of examples with value k.

The solution is simply

θk =
zk
N

∝ zk,

i.e. the fraction of examples with value k. (See HW4 Q1.1)

7 / 49



Density estimation Parametric methods

MLE for multinomial

The log-likelihood is

N∑
n=1

ln p(x = xn ;θ) =

N∑
n=1

ln θxn

=

K∑
k=1

∑
n:xn=k

ln θk

=

K∑
k=1

zk ln θk

where zk = |{n : xn = k}| is the number of examples with value k.

The solution is simply

θk =
zk
N

∝ zk,

i.e. the fraction of examples with value k. (See HW4 Q1.1)

7 / 49



Density estimation Parametric methods

MLE for multinomial

The log-likelihood is

N∑
n=1

ln p(x = xn ;θ) =

N∑
n=1

ln θxn

=

K∑
k=1

∑
n:xn=k

ln θk =

K∑
k=1

zk ln θk

where zk = |{n : xn = k}| is the number of examples with value k.

The solution is simply

θk =
zk
N

∝ zk,

i.e. the fraction of examples with value k. (See HW4 Q1.1)

7 / 49



Density estimation Parametric methods

MLE for multinomial

The log-likelihood is

N∑
n=1

ln p(x = xn ;θ) =

N∑
n=1

ln θxn

=

K∑
k=1

∑
n:xn=k

ln θk =

K∑
k=1

zk ln θk

where zk = |{n : xn = k}| is the number of examples with value k.

The solution is simply

θk =
zk
N

∝ zk,

i.e. the fraction of examples with value k. (See HW4 Q1.1)

7 / 49



Density estimation Nonparametric methods

Nonparametric methods

Can we estimate without assuming a fixed generative model?

Yes, kernel density estimation (KDE) is a common approach

here “kernel” means something different from what we have seen for
“kernel function” (in fact it refers to several different things in ML)

the approach is nonparametric: it keeps the entire training set

we focus on the one-dimensional (continuous) case
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Density estimation Nonparametric methods

High level idea picture from Wikipedia

Construct something similar to a histogram:

for each data point, create a “bump” (via a Kernel)

sum up or average all the bumps
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Density estimation Nonparametric methods

Kernel

KDE with a kernel K: R → R:

p(x) =
1

N

N∑
n=1

K (x− xn)

e.g. K(u) = 1√
2π
e−

u2

2 , the standard Gaussian density

Kernel needs to satisfy:

symmetry: K(u) = K(−u)∫∞
−∞K(u)du = 1, makes
sure p is a density function.
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Density estimation Nonparametric methods

Different kernels K(u)

1√
2π

e−
u2

2
1

2
I[|u| ≤ 1]

3

4
max{1− x2, 0}
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Density estimation Nonparametric methods

Bandwidth

If K(u) is a kernel, then for any h > 0

Kh(u) ≜
1

h
K
(u
h

)
(stretching the kernel)

can be used as a kernel too (verify the two properties yourself)

So general KDE is determined by both the kernel K and the bandwidth h

p(x) =
1

N

N∑
n=1

Kh (x− xn) =
1

Nh

N∑
n=1

K

(
x− xn

h

)

xn controls the center of each bump

h controls the width/variance of the bumps
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Density estimation Nonparametric methods

Effect of bandwidth picture from Wikipedia

Larger h means larger variance and also smoother density

Gray curve is ground-truth

Red: h = 0.05

Black: h = 0.337

Green: h = 2
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Density estimation Nonparametric methods

Bandwidth selection

Selecting h is a deep topic

there are theoretically-motivated approaches

one can also do cross-validation based on downstream applications
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Naive Bayes

Outline

1 Density estimation

2 Naive Bayes
Setup and assumption
Estimation and prediction
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3 Principal Component Analysis (PCA)
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Naive Bayes Setup and assumption

Naive Bayes

Naive Bayes

a simple yet surprisingly powerful classification algorithm

density estimation is one important part of the algorithm
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Naive Bayes Setup and assumption

Bayes optimal classifier

Suppose (x, y) is drawn from a joint distribution p. The Bayes optimal
classifier is

f∗(x) = argmax
c∈[C]

p(c | x)

i.e. predict the class with the largest conditional probability.

p is of course unknown, but we can estimate it, which is exactly a density
estimation problem!
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Naive Bayes Setup and assumption

Estimation

How to estimate a joint distribution? Observe we always have

p(x, y) = p(y)p(x | y)

We know how to estimate p(y) by now.

To estimate p(x | y = c) for some c ∈ [C], we are doing density estimation
using data {xn : yn = c}.

This is not a 1D problem in general.
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Naive Bayes Setup and assumption

A “naive” assumption

Naive Bayes assumption:
conditioning on a label, features are independent,

which means

p(x | y = c) =

D∏
d=1

p(xd | y = c)

Now for each d and c we have a simple 1D density estimation problem!

Is this a reasonable assumption? Sometimes yes, e.g.

use x = (Height, Vocabulary) to predict y = Age

Height and Vocabulary are dependent

but condition on Age, they are independent!

More often this assumption is unrealistic and “naive”, but still Naive Bayes
can work very well even if the assumption is wrong.

19 / 49
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Naive Bayes Estimation and prediction

Example: discrete features

Height: ≤3’, 3’-4’, 4’-5’, 5’-6’, ≥6’
Vocabulary: ≤5K, 5K-10K, 10K-15K, 15K-20K, ≥20K
Age: ≤5, 5-10, 10-15, 15-20, 20-25, ≥25

MLE estimation: e.g.

p(Age = 10-15) =
#examples with age 10-15

#examples

p(Height = 5’-6’ | Age = 10-15)

=
#examples with height 5’-6’ and age 10-15

#examples with age 10-15
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Naive Bayes Estimation and prediction

More formally

For a label c ∈ [C],

p(y = c) =
|{n : yn = c}|

N

For each possible value k of a discrete feature d,

p(xd = k | y = c) =
|{n : xnd = k, yn = c}|

|{n : yn = c}|
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Naive Bayes Estimation and prediction

Continuous features

If the feature is continuous, we can do

parametric estimation,

e.g. via a Gaussian

p(xd = x | y = c) =
1√

2πσcd
exp

(
−(x− µcd)

2

2σ2
cd

)

where µcd and σ2
cd are the empirical mean and variance of feature d

among all examples with label c.

or nonparametric estimation,

e.g. via a Kernel K and bandwidth h:

p(xd = x | y = c) =
1

|{n : yn = c}|
∑

n:yn=c

Kh(x− xnd)
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Naive Bayes Estimation and prediction

How to predict?

After learning the model

p(x, y) = p(y)

D∏
d=1

p(xd | y)

the prediction for a new example x is

argmax
c∈[C]

p(y = c | x)

= argmax
c∈[C]

p(x, y = c)

= argmax
c∈[C]

(
p(y = c)

D∏
d=1

p(xd | y = c)

)

= argmax
c∈[C]

(
ln p(y = c) +

D∑
d=1

ln p(xd | y = c)

)
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Naive Bayes Estimation and prediction

Examples

For discrete features, plugging in previous MLE estimations gives

argmax
c∈[C]

p(y = c | x)

= argmax
c∈[C]

(
ln p(y = c) +

D∑
d=1

ln p(xd | y = c)

)

= argmax
c∈[C]

(
ln |{n : yn = c}|+

D∑
d=1

ln
|{n : xnd = xd, yn = c}|

|{n : yn = c}|

)
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Naive Bayes Estimation and prediction

Examples

For continuous features with a Gaussian model,

argmax
c∈[C]

p(y = c | x)

= argmax
c∈[C]

(
ln p(y = c) +

D∑
d=1

ln p(xd | y = c)

)

= argmax
c∈[C]

(
ln |{n : yn = c}|+

D∑
d=1

ln

(
1√

2πσcd
exp

(
−(xd − µcd)

2

2σ2
cd

)))

= argmax
c∈[C]

(
ln |{n : yn = c}| −

D∑
d=1

(
lnσcd +

(xd − µcd)
2

2σ2
cd

))

which is quadratic in the feature x.
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Naive Bayes Connection to logistic regression

What naive Bayes is learning?

Observe again for the case of continuous features with a Gaussian model,
if we fix the variance for each feature to be σ (i.e. not a parameter of
the model any more), then the prediction becomes

argmax
c∈[C]

p(y = c | x)

= argmax
c∈[C]

(
ln |{n : yn = c}| −

D∑
d=1

(
lnσ +

(xd − µcd)
2

2σ2

))

= argmax
c∈[C]

(
ln |{n : yn = c}| −

D∑
d=1

µ2
cd

2σ2
+

D∑
d=1

µcd

σ2
xd

)

= argmax
c∈[C]

(
wc0 +

D∑
d=1

wcdxd

)
= argmax

c∈[C]
wT

c x (linear classifier!)

where we denote wc0 = ln |{n : yn = c}| −
∑D

d=1
µ2
cd

2σ2 and wcd = µcd

σ2 .
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Naive Bayes Connection to logistic regression

Connection to logistic regression

Moreover by similar calculation one can verify

p(y = c | x) ∝ ew
T
c x

This is exactly the softmax function, the same model we used for the
probabilistic interpretation of logistic regression!

So what is different then? They learn the parameters in different ways:

both via MLE, one on p(y = c | x), the other on p(x, y)

solutions are different: logistic regression has no closed-form, naive
Bayes admits a simple closed-form
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Naive Bayes Connection to logistic regression

Generative model v.s discriminative model

Discriminative model Generative model

Example logistic regression naive Bayes

Model conditional p(y | x) joint p(x, y)
(might have same p(y | x))

Learning MLE MLE

Accuracy usually better for large N usually better for small N

Remark
more flexible, can generate

data after learning
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Principal Component Analysis (PCA)

Outline

1 Density estimation

2 Naive Bayes

3 Principal Component Analysis (PCA)
PCA
Kernel PCA
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Principal Component Analysis (PCA) PCA

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning
problem.

Goal: reduce the dimensionality of a dataset so

it is easier to visualize and discover patterns

it takes less time and space to process for any applications
(classification, regression, clustering, etc)

noise is reduced

· · ·

There are many approaches, we focus on a linear method:
Principal Component Analysis (PCA)
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Principal Component Analysis (PCA) PCA

Example picture from here

Consider the following dataset:

17 features, each represents the average consumption of some food

4 data points, each represents some country

What can you tell?

Hard to say anything
looking at all these 17
features.

31 / 49
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Principal Component Analysis (PCA) PCA

Example picture from here

PCA can help us!

The first principal component of this dataset:

i.e. we reduce the dimensionality from 17 to just 1.

Now one data point is clearly different from the rest!

That turns out to be data from Northern Ireland, the only country not on
the island of Great Britain out of the 4 samples.
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Principal Component Analysis (PCA) PCA

Example picture from here

PCA can find the second (and more) principal component of the data
too:
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Principal Component Analysis (PCA) PCA

High level idea

How does PCA find these principal components (PC)?

The first PC is in fact the direction with the most variance, i.e. the
direction where the data is most spread out.
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Principal Component Analysis (PCA) PCA

Finding the first PC

More formally, we want to find a direction v ∈ RD with ∥v∥2 = 1, so that
the projection of the dataset on this direction has the most variance,

i.e.

max
v:∥v∥2=1

N∑
n=1

(
xT
nv − 1

N

∑
m

xT
mv

)2

xT
nv is exactly the projection of xn onto the direction v

if we pre-center the data, i.e. let x′
n = xn − 1

N

∑
m xm, then the

objective simply becomes

max
v:∥v∥2=1

N∑
n=1

(
x′
n
T
v
)2

= max
v:∥v∥2=1

vT

(
N∑

n=1

x′
nx

′
n
T

)
v

we will simply assume {xn} is centered (to avoid notation x′
n)
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Principal Component Analysis (PCA) PCA

Finding the first PC

With X ∈ RN×D being the data matrix (as in Lec 2), we want

max
v:∥v∥2=1

vT
(
XTX

)
v

The Lagrangian is
vT
(
XTX

)
v − λ(∥v∥22 − 1)

The stationary condition implies XTXv = λv, which means v is exactly
an eigenvector! And the objective becomes

vT
(
XTX

)
v = λvTv = λ

To maximize this, we want the eigenvector with the largest eigenvalue

Conclusion: the first PC is the top eigenvector of the covariance matrix
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Principal Component Analysis (PCA) PCA

Finding the other PCs

If v1 is the first PC, then the second PC is found via

max
v2:∥v2∥2=1,vT

1 v2=0
vT
2

(
XTX

)
v2

i.e. the direction that maximizes the variance among all other dimensions

This is just the second top eigenvector of the covariance matrix!

Conclusion: the d-th principal component is the d-th eigenvector (sorted
by the eigenvalue from largest to smallest).
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Principal Component Analysis (PCA) PCA

PCA

Input: a dataset represented as X, #components p we want

Step 1 Center the data by subtracting the mean

Step 2 Find the top p eigenvectors (with unit norm) of the covariance
matrix XTX, denoted by V ∈ RD×p

Step 3 Construct the new compressed dataset XV ∈ RN×p
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Principal Component Analysis (PCA) PCA

How many PCs do we want?

One common rule: pick p large enough so it covers about 90% of the
spectrum,

i.e. ∑p
d=1 λd∑D
d=1 λd

≥ 90%

where λ1 ≥ · · · ≥ λN are sorted eigenvalues.

Note:
∑D

d=1 λd = Tr(XTX), so no need to actually find all eigenvalues.

For visualization, also often pick p = 1 or p = 2.
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Principal Component Analysis (PCA) PCA

Another visualization example

A famous study of genetic map

dataset: genomes of 1,387 Europeans

First 2 PCs shown below;

looks remarkably like the geographic map
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Principal Component Analysis (PCA) Kernel PCA

Does PCA always work? picture from Wikipedia

PCA is a linear method (recall the new dataset is XV ),

it does not do
much when every direction has similar variance.
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Principal Component Analysis (PCA) Kernel PCA

KPCA: high level idea

Similar to learning a linear classifier, when we encounter such data, we can
apply kernel methods.

Kernel PCA (KPCA):

first map the data to a more complicated space via ϕ : RD → RM

then apply regular PCA to reduce the dimensionality

Sounds a bit counter-intuitive, but the key is this gives a nonlinear method.

How to implement KPCA efficiently without actually working in RM?
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Principal Component Analysis (PCA) Kernel PCA

KPCA: finding the PCs

Suppose v ∈ RM is the first PC for the nonlinearly-transformed data
Φ ∈ RN×M (centered).

Then

v =
1

λ
ΦTΦv = ΦTα

for some α ∈ RN , i.e. it’s a linear combination of data.

Plugging into ΦTΦv = λv gives

ΦTΦΦTα = λΦTα

and thus with the Gram matrix K = ΦΦT,

ΦT(Kα− λα) = 0.

So α is an eigenvector of K with the same eigenvalue λ!

Conclusion: KPCA is just finding top eigenvectors of the Gram matrix
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Principal Component Analysis (PCA) Kernel PCA

One issue: scaling

Should we scale α s.t ∥α∥2 = 1?

No. Recall we want v = ΦTα to have unit L2 norm, so

vTv = αTΦΦTα = λ∥α∥22 = 1

In other words, we in fact need to scale α so that its L2 norm is 1/
√
λ,

where λ it’s the corresponding eigenvalue.
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Principal Component Analysis (PCA) Kernel PCA

Another issue: centering

Should we still pre-center X?

No. Centering X does not mean Φ is centered!

Remember all we need is Gram matrix. What is the Gram matrix after Φ
is centered?

Let E ∈ RN×N be the matrix with all entries being 1
N ,

K̄ = Φ̄Φ̄T (Φ̄ = Φ−EΦ)

= (Φ−EΦ)(Φ−EΦ)T

= ΦΦT −EΦΦT −ΦΦTE +EΦΦTE

= K −EK −KE +EKE
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Principal Component Analysis (PCA) Kernel PCA

KPCA (contrast this with PCA on Slide 38)

Input: a dataset X, #components p we want, a kernel fucntion k

Step 1 Compute the Gram matrix K and the centered Gram matrix

K̄ = K −EK −KE +EKE (implicitly centering Φ)

Step 2 Find the top p eigenvectors of K̄ with the appropriate scaling,
denoted by A ∈ RN×p

(implicitly finding unit eigenvectors of Φ̄TΦ̄: V = Φ̄TA ∈ RM×p)

Step 3 Construct the new dataset K̄A ∈ RN×p

(implicitly/equivalently computing Φ̄V = Φ̄Φ̄TA)
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Principal Component Analysis (PCA) Kernel PCA

Example picture from Wikipedia

Applying kernel k(x,x′) = (xTx′ + 1)2:
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Principal Component Analysis (PCA) Kernel PCA

Example picture from Wikipedia

Applying Gaussian kernel k(x,x′) = exp
(
−∥x−x′∥2

2σ2

)
:
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Principal Component Analysis (PCA) Kernel PCA

Denoising via PCA
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