CSCI567 Machine Learning (Fall 2024) J

Prof. Dani Yogatama
University of Southern California

September 20, 2024

1/59

Outline

© Multiclass Classification

2 /59

Multiclass Classification

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

3 /59

Multiclass Classification

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

Examples:
e recognizing digits (C = 10) or letters (C = 26 or 52)
@ predicting weather: sunny, cloudy, rainy, etc
e predicting image category: ImageNet dataset (C ~ 20K)

3 /59

Multiclass Classification

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

Examples:
e recognizing digits (C = 10) or letters (C = 26 or 52)
@ predicting weather: sunny, cloudy, rainy, etc
e predicting image category: ImageNet dataset (C ~ 20K)

Nearest Neighbor Classifier naturally works for arbitrary C.

3 /59

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

4 /59

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?
Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

f(m):{1 if wle >0

2 ifwfz <0

4 /59

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

1 ifwrz>0
2 ifwfz <0

f(z)

can be written as
fla) = 1 if wim > w%m
2 fwyx>wizx

for any wi, w9 s.t. w = w; — wo

4 /59

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

f(m):{1 if wle >0

2 ifwfz <0

can be written as

T

1 ifwle>wlx
2 ifwiz>wix

= argmax wg:c
ke{1,2}

for any wi, w9 s.t. w = w; — wo

4 /59

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?
Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})
1 ifwlz>0
-}

2 ifwfz <0

can be written as

T

f@) = 1 ifwimeQTa:
2 fwyx>wizx

— argmax wy
ke{1,2}

for any wi, w9 s.t. w = w; — wo
Think of wlz as a score for class k.

4 /59

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

! S @ Blue class:
{x:wlz >0}

1] ° :
{z:wlz <0}

5/ 59

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

£ g

I
—~
ol

—_
‘ SN—
Wl
g
|

@ Blue class:

{x: 1 = argmax;, w; z}
° ;
{x : 2 = argmax;, w] =}

5/ 59

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

w1 = (1*%)

@ Blue class:

{x: 1 = argmax;, w] =}
° ;

{x : 2 = argmax, wlx}

5/ 59

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

@ Blue class:
{x : 1 = argmax, wlz}

1 1 {z : 2 = argmax;, wi z}

{x : 3 = argmax;, wlx}

6 /59

Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =< f(x) = argmax wix | wi,...,wc € RP
kelC]

7/ 59

Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

f

f(x) = argmax wix | wi,..., wc € RP
ke[C]

f(x) = argmax (W), | W € RSP
kelC]

7/ 59

Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =< f(x) = argmax wix | wi,...,wc € RP
kelC]

={ f(x) = argmax (W), | W € ROD
kelC]

Step 2: How do we generalize perceptron/hinge/logistic loss?

7/ 59

Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =< f(x) = argmax wix | wi,...,wc € RP
kelC]

= { f(x) = argmax (Wz);, | W € R“P
kelC]

Step 2: How do we generalize perceptron/hinge/logistic loss?

This lecture: focus on the more popular logistic loss

7/ 59

Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 — ws:

T) _ 1 B ewle

T
_ wix

—wTe wie wlx e
1+e eWi® | W3

Ply=1|z;w) =0c(w

8 / 59

Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 — ws:

T
1 ewi® T
P(y:1|x;w):0(wT): T, T T oc L ®
1+67wz €w1w+ew2w
Naturally, for multiclass:
Wk T T
kec) € ¥

8 / 59

Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 — ws:

T
1 ewi® T
P(y:1|x;w):0(wT): T, T T oc L ®
1+67wz €w1w+ew2w
Naturally, for multiclass:
eWi® wTa
kec) € ¥

This is called the softmax function.

8 / 59

Multinomial logistic regression
Applying MLE again

Maximize probability of seeing labels y1,...,yn given ®1,..., &N

N N

POW) = T Plyn | 2 W) =]|

'lUTw
ne=1 a1 kel €T

T
eWyn Tn

9 /59

Multinomial logistic regression
Applying MLE again

Maximize probability of seeing labels y1,...,yn given ®1,..., &N
N N R
PW) = [[Pyn | @; W) = H—wTwn
n=1 nl 2kelc) €

By taking negative log, this is equivalent to minimizing

- ()

€ Yn

9 /59

Multinomial logistic regression
Applying MLE again

Maximize probability of seeing labels y1,...,yn given ®1,..., &N
N N R
PW) = [[Pyn | @; W) = H—wTwn
n=1 nl 2kelc) €

By taking negative log, this is equivalent to minimizing

Zl (Zkew]emnk) Zln 1+Zewk Wy,) Te,

k#yn

9 /59

Multinomial logistic regression
Applying MLE again

Maximize probability of seeing labels y1,...,yn given ®1,..., &N
N N R
PW) = [[Pyn | @; W) = H—wTwn
n=1 nl 2kelc) €

By taking negative log, this is equivalent to minimizing

Zl (Zkewqemnk) Zln 1+Zewk Wy,) Te,

k#yn

This is the multiclass logistic loss, a.k.a. cross-entropy loss.

9 /59

Multinomial logistic regression
Applying MLE again

Maximize probability of seeing labels y1,...,yn given ®1,..., &N
N N R
PW) = [[Pyn | @; W) = H—wTwn
n=1 nl 2kelc) €

By taking negative log, this is equivalent to minimizing

Zl (Zkewqemnk) Zln 1+Zewk Wy,) Te,

k#yn

This is the multiclass logistic loss, a.k.a. cross-entropy loss.

When C = 2, this is the same as binary logistic loss.

9 /59

ST L eI
Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W) =In|1+ Z e(wk/*“’yn)Tzn ?
K #yn

10 / 59

ST L eI
Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W) =In |1+ Z e(wk/*wyn)Tzn ?
K #yn

It's a C x D matrix. Let's focus on the k-th row:

10 / 59

Multinomial logistic regression
Step 3: Optimization
Apply SGD: what is the gradient of

Fn(W) =In |1+ Z e(wk/*wyn)Tzn ?
K #yn

It's a C x D matrix. Let's focus on the k-th row:

If k& # yy:

e(wk —Wyp)Twn

ngFn(W) = 11 Zk,¢yn e(’wk/—wyn)Tmn

T
Ly

10 / 59

Multinomial logistic regression
Step 3: Optimization
Apply SGD: what is the gradient of
Fo(W)=In[14 Y elwwwm)ien 7
K #yn

It's a C x D matrix. Let's focus on the k-th row:

If k& # yy:

e(wk —Wyp)Twn

L T, O T

Vur Fa(W) zl =Pk |z, W)z!

n

10 / 59

ST L eI
Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W) =In|1+ Z e(wk/*wyn)Twn ?
K #yn

It's a C x D matrix. Let's focus on the k-th row:

If k& # yy:
(wk_wyn)Twn
e
E, W)= T P(k n, w T

ng W) L4+ sy e(Wy —wy,)T Tn Tn (k| @ W),

else:
— Zk’ ; e(wk’_wyn)Twn

Vo Fu (W) = (s):L-T

14+ Zk/¢y e(wk,_wyn)T:Bn "

10 / 59

ST L eI
Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W) =In|1+ Z e(wk/*wyn)Twn ?
K #yn

It's a C x D matrix. Let's focus on the k-th row:

If k& # yy:
('wk_'wyn)chn
2
F,(W) = TPk | p; W)x!
ng W) L4+ sy e(Wy —wy,)T Tn Tn (k| @ W),
else:
— Zk’ ; e(wk’_wyn)Twn
Vot Fn(W) = (iy) n=Pyn | Tn; W) — 1)z,

14+ Zk'#yn e(wk’_wyn)Twn Ln

10 / 59

Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

@ pick n € [N] uniformly at random
@ update the parameters

P(y:1|mn§w)
WeW-—n| Ply=yn | zn; W) -1

Ply=C|ax,; W)

39

11/ 59

Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

@ pick n € [N] uniformly at random
@ update the parameters

Ply=1|zn; W)

39

WW-—n| Py=yn |z W) -1 |z
Ply=C|ax,; W)

Think about why the algorithm makes sense intuitively.

11/ 59

Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

@ make a deterministic prediction argmax;.cc wiz

12 / 59

Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

@ make a deterministic prediction argmax;.cc wiz

o make a randomized prediction according to P(k | &; W) o e@r ®

12 / 59

Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

@ make a deterministic prediction argmax;.cc wiz

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

12 / 59

Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

@ make a deterministic prediction argmax;.cc wiz

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy [1+ pwr—wy)T@
k#y

12 / 59

Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

@ make a deterministic prediction argmax;.cc wiz

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy [1+ pwr—wy)T@
k#y

@ randomized
E[I[f(x) # y]]

12 / 59

Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

@ make a deterministic prediction argmax;.cc wiz

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy [1+ pwr—wy)T@
k#y

@ randomized
EIlf(x) #yl] =1-P(y |z W)

12 / 59

Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

@ make a deterministic prediction argmax;.cc wiz

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy [1+ pwr—wy)T@
k#y

@ randomized

Ellf(xz) #y]l =1-P(y | 2; W) < —InP(y | &; W)

12 / 59

Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

13 / 59

Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

Given a binary classification algorithm (any one, not just linear methods),
can we turn it to a multiclass algorithm, in a black-box manner?

13 / 59

Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

Given a binary classification algorithm (any one, not just linear methods),
can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.
e one-versus-all (one-versus-rest, one-against-all, etc.)
@ one-versus-one (all-versus-all, etc.)

Error-Correcting Output Codes (ECOC)

tree-based reduction

13 / 59

Multiclass Classification Reduction to binary classification

One-versus-all (OVA) (picture credit: link)

Idea: train C binary classifiers to learn "“is class k£ or not?" for each k.

14 / 59

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Multiclass Classification Reduction to binary classification

One-versus-all (OVA) (picture credit: link)
Idea: train C binary classifiers to learn "“is class k£ or not?" for each k.

Training: for each class k € [C],
@ relabel examples with class k as +1, and all others as —1

@ train a binary classifier hj using this new dataset

14 / 59

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Multiclass Classification Reduction to binary classification

One-versus-all (OvA)

Idea: train C binary classifiers to learn "“is class k£ or not?" for each k.

Training: for each class k € [C],
@ relabel examples with class k as +1, and all others

@ train a binary classifier hj using this new dataset

as —1

(picture credit: link)

| | O
X1 X1 X1 X1 X1
x N X2 X2 X2 X2
x3 B = | x3 X3 X3 X3
X4 X4 X4 X4 X4
X5 | X5 X5 X5 X5

4 4 4 Y

hy hy h3 hs

14 / 59

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example x

@ ask each hy: does this belong to class k7 (i.e. hi(x))

15 / 59

Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example x
@ ask each hy: does this belong to class k7 (i.e. hi(x))

e randomly pick among all k's s.t. hg(x) = +1.

15 / 59

Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example x
@ ask each hy: does this belong to class k7 (i.e. hi(x))

e randomly pick among all k's s.t. hg(x) = +1.

Issue: will (probably) make a mistake as long as one of hy, errs.

15 / 59

Multiclass Classification Reduction to binary classification

One-versus-one (OvO) (picturelcredit: link)

Idea: train (g) binary classifiers to learn “is class k or k'?".

16 / 59

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Multiclass Classification Reduction to binary classification

One-versus-one (OvO) (picture credit: link)
Idea: train (g) binary classifiers to learn “is class k or k'?".

Training: for each pair (k, k'),
o relabel examples with class k as +1 and examples with class k¥’ as —1
@ discard all other examples

e train a binary classifier iy, ;) using this new dataset

16 / 59

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Multiclass Classification Reduction to binary classification

One-versus-one (OvO) (picturelcredit: link)
Idea: train (g) binary classifiers to learn “is class k or k'?".

Training: for each pair (k, k),
o relabel examples with class k as +1 and examples with class k¥’ as —1
@ discard all other examples

e train a binary classifier iy, ;) using this new dataset

M vs. Myvs. B | Wvs W | Wvs. Mvs. B | Hvs.
X1 X1 X1 X1
x> N X2 Xo + X2 +
x3 W = X3 x3 + | x3
X4 X4 X4 X4
x; W x5 + | x5 + X5 +

2 3 3 4 3 3
ha,) a3 h3.4) h12) h14) hs2)

16 / 59

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x

e ask each classifier (3 1) to vote for either class k or K

17 / 59

Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x
e ask each classifier (3 1) to vote for either class k or K

@ predict the class with the most votes (break tie in some way)

17 / 59

Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x
e ask each classifier (3 1) to vote for either class k or K

@ predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

17 / 59

Multiclass Classification Reduction to binary classification

Error-correcting output codes (ECOC) (picture credit: link)

Idea: based on a code M € {—1,+1}“*L, train L binary classifiers to
learn “is bit b on or off".

M|1 2 3 4 5
m| + +
+ + +
|+ +
m+ + + +

18 / 59

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Reduction to binary classification
Error-correcting output codes (ECOC)

Idea: based on a code M € {—1,+1}*L, train L binary

learn “is bit b on or off".

Training: for each bit b € [L]

(picture credit: link)

classifiers to

M |1 3 5
o relabel example x;, as M, ; ot T +
- -
@ train a binary classifier hy using |+
this new dataset. m| o+ +
1 2 4 5
X1 X1 X1 X1 + X1 X1
x> MW Xo + | X0 X2 X2 X2
x3 W = | x3 +|X3 X3 + | X3 X3
X4 Xq X4 X4 + | Xa X4
x; W X5 4+ | X5 X5 4+ | Xs X5
J U \ U
h1 hy ha hs

18 / 59

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x

e compute the predicted code ¢ = (hi(x),...,h (x))T

19 / 59

Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x

e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax; (M c)y

19 / 59

Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x

e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax; (M c)y

How to design the code M7

19 / 59

Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x
e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax; (M c)y

How to design the code M7

@ the more dissimilar the codes, the more robust

19 / 59

Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x
e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax; (M c)y

How to design the code M7

@ the more dissimilar the codes, the more robust

o if any two codes are d bits away, then prediction can tolerate about d/2
errors

19 / 59

Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x
e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax; (M c)y

How to design the code M7

@ the more dissimilar the codes, the more robust

o if any two codes are d bits away, then prediction can tolerate about d/2
errors

@ random code is often a good choice

19 / 59

Reduction to binary classification
Tree based method

Idea: train &~ C binary classifiers to learn “belongs to which half?".

20 / 59

Reduction to binary classification
Tree based method

Idea: train &~ C binary classifiers to learn “belongs to which half?".

Training: see pictures

- = [[

X1 X1 + | X1
X2 X2 Xo +
X3 X3 X3
X4 X4 + | Xa
X5 X5 4 | X5

J U 3

h ho hs

20 / 59

Reduction to binary classification
Tree based method

Idea: train &~ C binary classifiers to learn “belongs to which half?".

Training: see pictures

- = [[

X1 X1 + | X1
X2 X2 Xo +
X3 X3 X3
X4 X4+ | X4
X5 X5 4 | X5

I U U

h ho hs

Prediction is also natural,

20 / 59

Reduction to binary classification
Tree based method

Idea: train &~ C binary classifiers to learn “belongs to which half?".

Training: see pictures

= = [3 [o h1
X1 X1+ | X1 | . |
x N X X + 1
x3 W = | x3 X3
X4 X4 + | Xa / \
x; M X5 + | X5 4 h2 h3

Prediction is also natural, but is very fast! (think ImageNet where
C ~ 20K)

20 / 59

Multiclass Classification Reduction to binary classification

Comparisons

training prediction

Reduction . .
time time

remark

training time: how many
training points are created

prediction time: how many
binary predictions are made

21 / 59

R DB L e
Comparisons

. trainin rediction
Reduction . & P . remark
time time
OvA
training time: how many | = u o
.. . X1 X1 X1 + [x1 X1
training points are created X ® * 2 X+
x3 W = | x3 X3 X3 x3 +
prediction time: how many X X X X
. .. x5 M X5 + | x5 Xs X5
binary predictions are made Y Y Y y
h ha hs ha

21 / 59

R DB L e
Comparisons

. trainin rediction
Reduction . & P . remark
time time
OvA CN
training time: how many | = u o
.. . X1 X1 X1 + [x1 X1
training points are created X ® * 2 X+
x3 W = | x3 X3 X3 x3 +
prediction time: how many X X X X
. .. x5 M X5 + | x5 Xs X5
binary predictions are made Y Y Y y
h ha hs ha

21 / 59

R DB L e
Comparisons

. trainin rediction
Reduction . & P . remark
time time
OvA CN C
training time: how many | = u o
.. . X1 X1 X1 + [x1 X1
training points are created X ® * 2 X+
x3 W = | x3 X3 X3 x3 +
prediction time: how many X X X X
. .. x5 M X5 + | x5 Xs X5
binary predictions are made Y Y Y y
h ha hs ha

21 / 59

Multiclass Classification Reduction to binary classification

Comparisons

. trainin rediction
Reduction . & P . remark
time time
OvA CN C not robust
training time: how many u o
.. . X1 X1 X1 + [x1 X1
training points are created x * 2 X+
X3 X3 X3 X3 X3 +
prediction time: how many X X X X
) L. X5 X5+ | X5 X5 X5
binary predictions are made Y Y y
h h3 hy

21 / 59

Multiclass Classification Reduction to binary classification

Comparisons
. trainin rediction
Reduction . g P . remark
time time

OvA CN C not robust

OovO
training time hOW many — H :1vs. HMyvs. B Hvs. W :lvs. Wvs. :lvs.

- . . x; ® X2 X2 4 X2
training points are created o om o s x4+ |
prediction time: how many SE IR e P I R Y

binary predictions are made

has I hia hoy hs2)

21 / 59

Multiclass Classification Reduction to binary classification

Comparisons
. trainin rediction
Reduction . g P . remark
time time

OvA CN C not robust

OovO (C—1)N
training time hOW many — H :1vs. HMyvs. B Hvs. W :lvs. Wvs. :lvs.

- . . x; ® X2 X2 4 X2
training points are created x m o= s x4+ |
prediction time: how many SE IR e P I R Y

binary predictions are made

has I hia hoy hs2)

21 / 59

Multiclass Classification Reduction to binary classification

Comparisons
Reduction tra.mmg preqlctlon remark
time time

OvA CN C not robust

OvO (C—1)N 0(C?)
training time hOW many — H :1vs. Hyvs. B | Hvs. W :lvs. Wvs. W :lvs.

x M X2 po t X2

training points are created wom o= o+
prediction time: how many SE IR e P I R Y

binary predictions are made

has I hia hoy hs2)

21 / 59

Multiclass Classification Reduction to binary classification

Comparisons
Reduction tra.mmg preqlctlon remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error

training time: how many

training points are created

prediction time: how many

binary predictions are made

H W vs. Mys. B | Hvs W | Wvs. Wvs. W | Wvs.
X1 X1 X1 X1
x M X2 po X2
x3 W = X3 X3 + X3
X4 X4 X4 X4
x5 W x5 + | x5 + X5 +
1 4 I 1 1

has I hia hoy hs2)

21 / 59

Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra'ining preqiction remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error
ECOC

training time: how many

training points are created

prediction time: how many
binary predictions are made

X1
X2
X3
X4
X5

X1

n X2
n = X3

X4
u X5

2 3 4 5
X1 x1 +|x1 +|x
X2 + | X2 X2 X2
X3 + X3 + X3 t X3
X4 Xs + | xa + | xa
X5 X5 + | X5 X5

I I I I

hy h3 ha hs

Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra'ining preqiction remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error
ECOC LN

training time: how many

training points are created

prediction time: how many
binary predictions are made

X1
X2
X3
X4
X5

X1

n X2
n = X3

X4
u X5

2 3 4 5
X1 x1 +|x1 +|x
X2 + | X2 X2 X2
X3 + X3 + X3 t X3
X4 Xs + | xa + | xa
X5 X5 + | X5 X5

I I I I

hy h3 ha hs

Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra'ining preqiction remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error
ECOC LN L

training time: how many

training points are created

prediction time: how many
binary predictions are made

X1

n X2
n = X3

X4
u X5

2 3 4 5
X1 x1 +|x1 +|x
X2 + | X2 X2 X2
X3 + X3 + X3 t X3
X4 Xs + | xa + | xa
X5 X5 + | X5 X5

I I I I

Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra'ining preqiction remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error
ECOC LN L need diversity when designing code

training time: how many

training points are created

prediction time: how many
binary predictions are made

X1

n X2
n = X3

X4
u X5

2 3 4 5
X1 x1 +|x1 +|x
X2 + | X2 X2 X2
X3 + X3 + X3 t X3
X4 Xs + | xa + | xa
X5 X5 + | X5 X5

I I I I

Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra_ining prec_liction remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error
ECOC LN L need diversity when designing code
Tree

training time: how many

training points are created

prediction time: how many

binary predictions are made

| Y B s 3

21 / 59

Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra_ining prec_liction remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error
ECOC LN L need diversity when designing code
Tree O((logy CO)N)

training time: how many

training points are created

prediction time: how many

binary predictions are made

[IO

21 / 59

Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra_ining prec_liction remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error
ECOC LN L need diversity when designing code
Tree O((logy O)N) | O(log, C)

training time: how many

training points are created

prediction time: how many
binary predictions are made

[IO

21 / 59

Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra_ining prec_liction remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error
ECOC LN L need diversity when designing code
Tree O((logs CO)N) | O(log, C) gooA far “avtrama rlaccification”

training time: how many

training points are created

prediction time: how many
binary predictions are made

[IO

21 / 59

Outline

© Neural Nets

22 / 59

Linear models are not always adequate

i ® 20
15 e A .
ERAE 5 .
T e T e 13 . .
, I SN s -4
For e AT e .
et U NS RGN . *
4 i 4 + os| % = .
o
+ +, + + ' " s
o el oof o e]
3 ittt A
%“2*“**&“"‘* LT s s . mte L
i o . L N
Saul e iy o ~o3) N
ait S +1 gt -« s F . .
IS BECE
}x‘fd, S8 TRy 10| .
25 R S A R T o
-3 .
" -
o5 o o5 T s 2 ¥ T N1

We can use a nonlinear mapping as discussed:

o) :x cRP — z ¢ RM

23 / 59

Linear models are not always adequate

B R N S SR AR 20
e
g ey Y
VS I Rt 1
| PR e W
Sty
sar, LAl
. P R N A 05, * B
+oaieh + + R LI
ot wtnt of .o .
1 el H .
B e ST
B R T F o, L]
ST . T N L
PR s 0)
LI SRR E
23| bt g T
15
4
05 0 05 1 15 2 205 15 10 05 0.0 05 10 15 20

We can use a nonlinear mapping as discussed:

o) :x cRP — z ¢ RM

But what kind of nonlinear mapping ¢ should be used? Can we actually
learn this nonlinear mapping?

23 / 59

Linear models are not always adequate

1ol SR

. :
¥ ¥
%{: +gx g »3.:*" 10
P R I N A 03 N a
o
B S I . g "0 s
Ty byt W b ool o
Lt S . o "
e Y, o3
il LN S
sy T BT 10|
o5 AR RN el g

We can use a nonlinear mapping as discussed:

o) :x cRP — z ¢ RM

But what kind of nonlinear mapping ¢ should be used? Can we actually
learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets

23 / 59

Linear model as a one-layer neural net

h(a) = a for linear model

24 / 59

Neural Nets Definition

Linear model as a one-layer neural net

h(a) = a for linear model

To create non-linearity, can use
@ Rectified Linear Unit (ReLU): h(a) = max{0,a}

@ sigmoid function: h(a) = H%

a

e TanH: h(a) = 22;2;

@ many more

24 / 59

More output nodes

T1

Z2 o=h(Wuzx)

T3

w

W e RYS3 bR = RY so h(a) = (h1(a1), ha(ay), hs(as), ha(as))

25 / 59

Neural Nets Definition

More output nodes

T1

Z2 o=h(Wuzx)
3

w

W e RS, bR o R so h(a) = (hi(a1), ha(az), ha(as), ha(aa))

Can think of this as a nonlinear mapping: ¢(x) = h(Wx)

25 / 59

More layers

Becomes a network:

26 / 59

More layers

Becomes a network:

o eaCh nOde iS Ca”ed a neuron input layer hidden layer 1 hidden layer 2 output layer

26 / 59

More layers

Becomes a network:

@ each node is called a neuron input layer hidden layer 1 hidden layer 2 output layer

@ h is called the activation function

e can use h(a) = 1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) = a

26 / 59

More layers

Becomes a network:

@ each node is called a neuron input layer hidden layer 1 hidden layer 2 output layer

@ h is called the activation function

e can use h(a) = 1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) = a

o #layers refers to #hidden_layers (plus 1 or 2 for input/output layers)

26 / 59

Neural Nets Definition

More layers

Becomes a network:

@ each node is called a neuron input layer hiddenlayer1 hidden layer 2 outputlayer

@ h is called the activation function

e can use h(a) = 1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) = a

o #layers refers to #hidden_layers (plus 1 or 2 for input/output layers)

@ deep neural nets can have many layers and millions of parameters

26 / 59

Neural Nets Definition

More layers

Becomes a network:

each node is called a neuron it ayer hodenlayer1 hddenlaer2 outputlayer

h is called the activation function
e can use h(a) = 1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) = a

#layers refers to #hidden_layers (plus 1 or 2 for input/output layers)

deep neural nets can have many layers and millions of parameters

@ this is a feedforward, fully connected neural net, there are many
variants (convolutional nets, residual nets, recurrent nets, etc.)

26 / 59

Neural Nets Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

27 / 59

Neural Nets Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

27 / 59

Neural Nets Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

o for feedforward network, need to decide number of hidden layers,
number of neurons at each layer, activation functions, etc.

27 / 59

Math formulation

An L-layer neural net can be written as

F(x)=hL(Wrh 1 (W1 hy (Wiz)))

28 / 59

Neural Nets Definition

Math formulation

An L-layer neural net can be written as

F(x)=hL(Wrh 1 (W1 hy (Wiz)))

input layer hidden layer 1 hidden layer 2 output layer

To ease notation, for a given input x, define recursively

o) = &, ay = WgOg_l, Oy — hg(ag) (f = 1, PPN L)
where
o W, € RPexDPe-1 is the weights between layer £ — 1 and /¢
e Dy =D,Dq,...,DL are numbers of neurons at each layer
e ay € RP! is input to layer ¢
e oy € RP¢ is output of layer ¢
e hy: RPr — RDP¢ js activation functions at layer £

28 / 59

Learning the model

No matter how complicated the model is, our goal is the same: minimize

N

1
F(Wl,...,WL):NZFn(Wl,...,WL)

n=1

29 / 59

Neural Nets Definition

Learning the model

No matter how complicated the model is, our goal is the same: minimize

N
1
F(Wy,...,W,) = NZFn(Wl,...,WL)
n=1

where

| f(zn) — ynll3 for regression
F,(Wy,..., W) = I

(W1 L {ln (1 + D ktyn ef(“”")k*f(m")yn> for classification

29 / 59

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

30 / 59

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

30 / 59

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

e for a composite function f(g(w))

of _0fog
ow 0g Ow

30 / 59

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:
e for a composite function f(g(w))
of _9f9g
ow 0g Ow

e for a composite function f(g1(w),...,gq(w))

f _ <~ 0f dgi
ow

i=1 dgi Ow

30 / 59

How to optimize such a complicated function?
Same thing: apply SGD! even if the model is nonconvex.
What is the gradient of this complicated function?
Chain rule is the only secret:

e for a composite function f(g(w))

of _0fog
ow 0g Ow

e for a composite function f(g1(w),...,gq(w))

0f _ -~ 01 05
ow P 0g; Ow
the simplest example f(g1(w), ga(w)) = g1(w)ga(w)

30 / 59

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F, w.r.t. to w;;

31/ 59

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F, w.r.t. to w;;

OF, OF, Oa;
8w,;j N Ga,» Gwij

31/ 59

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F, w.r.t. to w;;

OF, _ 0F, da; _ OF, d(wijo))
Owij Oa; Qwi; Da; Owi

31/ 59

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F, w.r.t. to w;;

8Fn o 8Fn 6&1' o GFn 8(wijoj) . 8Fn
8w,;j N Ga,» Gwij - 8&1' 8w2~j 6&1'

31/ 59

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F, w.r.t. to w;;

8Fn o 8Fn 6@1' o GFn 8(wijoj) . 8Fn

8w,;j N Ga,» Gwij 8&1' 8w1~j - 6&1' Oj
OF, OF, do,
8@2' N 802' 8@2'

31/ 59

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F, w.r.t. to w;;

8Fn o 8Fn 6@1' o GFn 8(wijoj) . 8Fn0‘
8w¢j N Ga,» Gwij - 8&1' 8w1~j - 6&1' J

oF, 0F,do; Z OF, Oay,)
da; Oo; da; Oay, (90 i(ai

31/ 59

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F, w.r.t. to w;;

8Fn o 8Fn 6@1' o GFn 8(wijoj) . 8Fn0‘
8w¢j N Ga,» Gwij - 8&1' 8w1~j - 6&1' J

oF, 0F, do; OF,, Oay, B OF, \ .,
oa; N do; Oa; <Z Oay, Do;))_ (- day, wkl) hi(al)

31/ 59

Computing the derivative

Adding the subscript for layer:

OF, OF,
Owyi; Oag;

i | Poiac
3% (Z 8ag+1k.w£+1’k) vi(ae)

O¢—1,5

32 /59

Computing the derivative

Adding the subscript for layer:

OF, OF,
Owyi; Oag;

i | Poiac
3% (Z 8ag+1k.w£+1’k) vi(ae)

For the last layer, for square loss

OF, _ O(hii(aL) — Yn.i)?
day ; day ;

O¢—1,5

32 /59

Computing the derivative

Adding the subscript for layer:

oF, _ OF,
aw&ij 8&(71'

i | heilaei
3% (Z aam,cw“lv’f) vi(ae;)

For the last layer, for square loss

O, _ olhiilons) — e |
- 7) : =2(h % i) — 7 h i i
aaL,i 804_,1. (L, (CLL,) Yn,) L, (CLL,)

O¢—1,5

32 /59

Computing the derivative

Adding the subscript for layer:

oF, _ OF,
aw&ij 8&(71'

i | heilaei
3% (Z aam,cw“lv’f) vi(ae;)

For the last layer, for square loss

O, _ olhiilons) — e |
- 7) : =2(h % i) — 7 h i i
aaL,i 804_,1. (L, (CLL,) Yn,) L, (CLL,)

O¢—1,5

Exercise: try to do it for logistic loss yourself.

32 /59

Neural Nets Backpropagation

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

OF, OF, o7
oW, da, 1

e RPexDe—1

dagt1

oF, B <W£1 Ol) [hlg(ag) if { <L
2(hi(aL) — yn) o h{ () else

6ag

where v1 0 v = (v11V21, -+ , U1pV2p) IS the element-wise product (a.k.a.
Hadamard product).

Verify yourself!

33 /59

Backpropagation
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W randomly.

34 / 59

Backpropagation
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W randomly. Repeat:
@ randomly pick one data point n € [N]

34 / 59

Backpropagation
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W randomly. Repeat:

@ randomly pick one data point n € [N]

@ forward propagation: for each layer / =1,...,L
e compute ay = Wyo,—1 and oy = hy(ay) (0p = x,)

34 / 59

Backpropagation
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W randomly. Repeat:

@ randomly pick one data point n € [N]

@ forward propagation: for each layer / =1,...,L
e compute ay = Wyoy_1 and oy = hy(ay) (0p = x,)

© backward propagation: foreach {=1L,... 1
e compute

oF, {(W@T+1 o5)ohy(ar) ifl<L
2

Oagy
day (hi(aL) —yn) o hl(ay) else

e update weights

oF, OF,

W[< W[— naWe = W[— 7’]870,[0@71

34 / 59

Backpropagation
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W randomly. Repeat:

@ randomly pick one data point n € [N]

@ forward propagation: for each layer / =1,...,L
e compute ay = Wyo,—1 and oy = hy(ay) (0p = x,)

© backward propagation: foreach {=1L,... 1
e compute

0P, _ [(Whi) omia) ifr<L
aae (hL(a’L) yn) o hf_(a,_) else
e update weights

OF, OF,
Tow, = W' Tga, Ot

(Important: should W, be overwritten immediately in the last step?)

Wy~ W, —

34 / 59

More tricks to optimize neural nets

Many variants based on Backprop

35 / 59

More tricks to optimize neural nets

Many variants based on Backprop

@ mini-batch: randomly sample a batch of examples to form a
stochastic gradient (common batch size: 32, 64, 128, etc.)

35 / 59

e
More tricks to optimize neural nets

Many variants based on Backprop

@ mini-batch: randomly sample a batch of examples to form a
stochastic gradient (common batch size: 32, 64, 128, etc.)

@ batch normalization: normalize the inputs of each neuron over the
mini-batch (to zero-mean and one-variance; c.f. Lec 1)

35 / 59

Neural Nets Backpropagation

More tricks to optimize neural nets

Many variants based on Backprop

@ mini-batch: randomly sample a batch of examples to form a
stochastic gradient (common batch size: 32, 64, 128, etc.)

@ batch normalization: normalize the inputs of each neuron over the
mini-batch (to zero-mean and one-variance; c.f. Lec 1)

e momentum: make use of previous gradients (taking inspiration from
physics)

35 / 59

SGD with momentum (a simple version)

Initialize wg and velocity v =0
Fort=1,2,...
e form a stochastic gradient g;
@ update velocity v « aw + g; for some discount factor « € (0,1)

@ update weight wy + w;_1 — nv

36 / 59

Neural Nets Backpropagation

SGD with momentum (a simple version)

Initialize wg and velocity v =0
Fort=1,2,...
e form a stochastic gradient g;
@ update velocity v « aw + g; for some discount factor « € (0,1)

@ update weight wy + w;_1 — nv

Updates for first few rounds:
® wi; = wo — Ngi
¢ Wy = w1 —ang: — 1Ng2
o w3 = wy — a’ng1 — angs — g3
@ .-

36 / 59

Preventing overfitting
Overfitting

Overfitting is very likely since neural nets are too powerful.

Methods to overcome overfitting:

data augmentation
regularization
dropout

early stopping

37 / 59

Neural Nets Preventing overfitting

Data augmentation

Data: the more the better. How do we get more data?

38 / 59

Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data

Affine . Elastic
Distortion Noise Deformation

Horizontal Random

flip Translation Hue Shit

38 / 59

\ETEIMNSEI Preventing overfitting

Regularization

L2 regularization: minimize

L
F'(Wh,...,W) =F(Wy,..., W) + 2> |[Will3
=1

39 / 59

\ETEIMNSEI Preventing overfitting

Regularization

L2 regularization: minimize
L
F'(Wi,..., W) = F(Wi,...,WL) + XY [|[Wi3

Simple change to the gradient:

OF' oF
(?ww 811)%]

+ 2 w;;

39 / 59

\ETEIMNSEI Preventing overfitting

Regularization

L2 regularization: minimize

L
F'(Wh,...,W) =F(Wy,..., W) + 2> |[Will3

Simple change to the gradient:

OF' oF
8wi] 811)%]

+ 2 w;;

Introduce weight decaying effect

39 / 59

Neural Nets Preventing overfitting

Dropout

Independently delete each neuron with a fixed probability (say 0.5),
during each iteration of Backprop (only for training, not for testing)

w O @
AN,
e

1}&%:‘0& A

e
AR RS
aYa\Y

Very effective, makes training faster as well

40 / 59

Preventing overfitting
Early stopping

Stop training when the performance on validation set stops improving

/ Early stopping
0.20

T T T
e—e Training set loss
0.15 — Validation set loss |
0.10 4 -
2 0.05 - a
0.00
0 50 100 150 200 250

Time (epochs)

41 / 59

Conclusions for neural nets

Deep neural networks

@ are hugely popular, achieving best performance on many problems

42 / 59

Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems

@ do need a /ot of data to work well

42 / 59

\ETEIMNSEI Preventing overfitting

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems
@ do need a /ot of data to work well

@ take a /ot of time to train (need GPUs for massive parallel computing)

42 / 59

\ETEIMNSEI Preventing overfitting

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems
@ do need a /ot of data to work well
@ take a /ot of time to train (need GPUs for massive parallel computing)

@ take some work to select architecture and hyperparameters

42 / 59

Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems
@ do need a /ot of data to work well
@ take a /ot of time to train (need GPUs for massive parallel computing)
@ take some work to select architecture and hyperparameters

@ are still not well understood in theory

42 / 59

