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Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

Examples:
e recognizing digits (C = 10) or letters (C = 26 or 52)
@ predicting weather: sunny, cloudy, rainy, etc
e predicting image category: ImageNet dataset (C ~ 20K)

Nearest Neighbor Classifier naturally works for arbitrary C.
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Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?
Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})
1 ifwlz>0
-}

2 ifwfz <0

can be written as

T

f@) = 1 ifwimeQTa:
2 fwyx>wizx

— argmax wy
ke{1,2}

for any wi, w9 s.t. w = w; — wo
Think of wlz as a score for class k.
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

w1 = (1*%)

@ Blue class:

{x: 1 = argmax;, w] =}
° ;

{x : 2 = argmax, wlx}
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

@ Blue class:
{x : 1 = argmax, wlz}

1 1 {z : 2 = argmax;, wi z}

{x : 3 = argmax;, wlx}
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Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =< f(x) = argmax wix | wi,...,wc € RP
kelC]

= { f(x) = argmax (Wz);, | W € R“P
kelC]

Step 2: How do we generalize perceptron/hinge/logistic loss?

This lecture: focus on the more popular logistic loss
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Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 — ws:
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Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 — ws:

T
1 ewi® T
P(y:1|x;w):0(wT ): T, T T oc L ®
1+67wz €w1w+ew2w
Naturally, for multiclass:
eWi® wTa
kec) € ¥

This is called the softmax function.
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Multinomial logistic regression
Applying MLE again

Maximize probability of seeing labels y1,...,yn given ®1,..., &N

N N

POW) = T Plyn | 2 W) = ]|

'lUTw
ne=1 a1 kel €T

T
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Multinomial logistic regression
Applying MLE again

Maximize probability of seeing labels y1,...,yn given ®1,..., &N
N N R
PW) = [[Pyn | @; W) = H—wTwn
n=1 nl 2kelc) €

By taking negative log, this is equivalent to minimizing

Zl (Zkewqemnk ) Zln 1+Zewk Wy, ) Te,

k#yn

This is the multiclass logistic loss, a.k.a. cross-entropy loss.

When C = 2, this is the same as binary logistic loss.
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Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W) =In|1+ Z e(wk/*wyn)Twn ?
K #yn

It's a C x D matrix. Let's focus on the k-th row:

If k& # yy:
('wk_'wyn)chn
2
F,(W) = TPk | p; W)x!
ng W) L4+ sy e(Wy —wy, )T Tn Tn (k| @ W),
else:
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Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

@ pick n € [N] uniformly at random
@ update the parameters

P(y:1|mn§w)
WeW-—n| Ply=yn | zn; W) -1

Ply=C|ax,; W)

39
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Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

@ pick n € [N] uniformly at random
@ update the parameters

Ply=1|zn; W)

39

WW-—n| Py=yn |z W) -1 |z
Ply=C|ax,; W)

Think about why the algorithm makes sense intuitively.
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A note on prediction

Having learned W, we can either

@ make a deterministic prediction argmax;.cc wiz

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy [ 1+ pwr—wy)T@
k#y

@ randomized

Ellf(xz) #y]l =1-P(y | 2; W) < —InP(y | &; W)
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Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

Given a binary classification algorithm (any one, not just linear methods),
can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.
e one-versus-all (one-versus-rest, one-against-all, etc.)
@ one-versus-one (all-versus-all, etc.)

Error-Correcting Output Codes (ECOC)

tree-based reduction
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One-versus-all (OVA) (picture credit: link)

Idea: train C binary classifiers to learn "“is class k£ or not?" for each k.
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Multiclass Classification Reduction to binary classification

One-versus-all (OvA)

Idea: train C binary classifiers to learn "“is class k£ or not?" for each k.

Training: for each class k € [C],
@ relabel examples with class k as +1, and all others

@ train a binary classifier hj using this new dataset

as —1

(picture credit: link)

| | O
X1 X1 X1 X1 X1
x N X2 X2 X2 X2
x3 B = | x3 X3 X3 X3
X4 X4 X4 X4 X4
X5 | X5 X5 X5 X5

4 4 4 Y

hy hy h3 hs
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Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example x
@ ask each hy: does this belong to class k7 (i.e. hi(x))

e randomly pick among all k's s.t. hg(x) = +1.

Issue: will (probably) make a mistake as long as one of hy, errs.
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Idea: train (g) binary classifiers to learn “is class k or k'?".

Training: for each pair (k, k),
o relabel examples with class k as +1 and examples with class k¥’ as —1
@ discard all other examples

e train a binary classifier iy, ;) using this new dataset

M vs. Myvs. B | Wvs W | Wvs. Mvs. B | Hvs.
X1 X1 X1 X1
x> N X2 Xo + X2 +
x3 W = X3 x3 + | x3
X4 X4 X4 X4
x; W x5 + | x5 + X5 +

2 3 3 4 3 3
ha,) a3 h3.4) h12) h14) hs2)
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Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x
e ask each classifier (3 1) to vote for either class k or K

@ predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

17 / 59



Multiclass Classification Reduction to binary classification

Error-correcting output codes (ECOC) (picture credit: link)

Idea: based on a code M € {—1,+1}“*L, train L binary classifiers to
learn “is bit b on or off".

M|1 2 3 4 5
m| + +
+ + +
|+ +
m+ + + +
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Reduction to binary classification
Error-correcting output codes (ECOC)

Idea: based on a code M € {—1,+1}*L, train L binary

learn “is bit b on or off".

Training: for each bit b € [L]

(picture credit: link)

classifiers to

M |1 3 5
o relabel example x;, as M, ; ot T +
- -
@ train a binary classifier hy using |+
this new dataset. m| o+ +
1 2 4 5
X1 X1 X1 X1 + X1 X1
x> MW Xo + | X0 X2 X2 X2
x3 W = | x3 +|X3 X3 + | X3 X3
X4 Xq X4 X4 + | Xa X4
x; W X5 4+ | X5 X5 4+ | Xs X5
J U \ U
h1 hy ha hs
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Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x
e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax; (M c)y

How to design the code M7

@ the more dissimilar the codes, the more robust

o if any two codes are d bits away, then prediction can tolerate about d/2
errors

@ random code is often a good choice

19 / 59
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Reduction to binary classification
Tree based method

Idea: train &~ C binary classifiers to learn “belongs to which half?".

Training: see pictures

= = [ 3 [ o h1
X1 X1+ | X1 | . |
x N X X + 1
x3 W = | x3 X3
X4 X4 + | Xa / \
x; M X5 + | X5 4 h2 h3

Prediction is also natural, but is very fast! (think ImageNet where
C ~ 20K)
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Multiclass Classification Reduction to binary classification

Comparisons

training prediction

Reduction . .
time time

remark

training time: how many
training points are created

prediction time: how many
binary predictions are made
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Multiclass Classification Reduction to binary classification

Comparisons
Reduction tra.mmg preqlctlon remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error

training time: how many

training points are created

prediction time: how many

binary predictions are made

H W vs. Mys. B | Hvs W | Wvs. Wvs. W | Wvs.
X1 X1 X1 X1
x M X2 po X2
x3 W = X3 X3 + X3
X4 X4 X4 X4
x5 W x5 + | x5 + X5 +
1 4 I 1 1

has I hia hoy hs2)

21 / 59



Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra'ining preqiction remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error
ECOC

training time: how many

training points are created

prediction time: how many
binary predictions are made

X1
X2
X3
X4
X5

X1

n X2
n = X3

X4
u X5

2 3 4 5
X1 x1 +|x1 +|x
X2 + | X2 X2 X2
X3 + X3 + X3 t X3
X4 Xs + | xa + | xa
X5 X5 + | X5 X5

I I I I

hy h3 ha hs



Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra'ining preqiction remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error
ECOC LN

training time: how many

training points are created

prediction time: how many
binary predictions are made

X1
X2
X3
X4
X5

X1

n X2
n = X3

X4
u X5

2 3 4 5
X1 x1 +|x1 +|x
X2 + | X2 X2 X2
X3 + X3 + X3 t X3
X4 Xs + | xa + | xa
X5 X5 + | X5 X5

I I I I

hy h3 ha hs



Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra'ining preqiction remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error
ECOC LN L

training time: how many

training points are created

prediction time: how many
binary predictions are made

X1

n X2
n = X3

X4
u X5

2 3 4 5
X1 x1 +|x1 +|x
X2 + | X2 X2 X2
X3 + X3 + X3 t X3
X4 Xs + | xa + | xa
X5 X5 + | X5 X5

I I I I



Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra'ining preqiction remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error
ECOC LN L need diversity when designing code

training time: how many

training points are created

prediction time: how many
binary predictions are made

X1

n X2
n = X3

X4
u X5

2 3 4 5
X1 x1 +|x1 +|x
X2 + | X2 X2 X2
X3 + X3 + X3 t X3
X4 Xs + | xa + | xa
X5 X5 + | X5 X5

I I I I



Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra_ining prec_liction remark
time time
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Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra_ining prec_liction remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error
ECOC LN L need diversity when designing code
Tree O((logs CO)N) | O(log, C) gooA far “avtrama rlaccification”

training time: how many

training points are created

prediction time: how many
binary predictions are made

[ IO
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Outline

© Neural Nets
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Linear models are not always adequate
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We can use a nonlinear mapping as discussed:

o) :x cRP — z ¢ RM
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We can use a nonlinear mapping as discussed:

o) :x cRP — z ¢ RM

But what kind of nonlinear mapping ¢ should be used? Can we actually
learn this nonlinear mapping?
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We can use a nonlinear mapping as discussed:

o) :x cRP — z ¢ RM

But what kind of nonlinear mapping ¢ should be used? Can we actually
learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets
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Linear model as a one-layer neural net

h(a) = a for linear model
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Neural Nets Definition

Linear model as a one-layer neural net

h(a) = a for linear model

To create non-linearity, can use
@ Rectified Linear Unit (ReLU): h(a) = max{0,a}

@ sigmoid function: h(a) = H%

a

e TanH: h(a) = 22;2;

@ many more
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More output nodes

T1

Z2 o=h(Wuzx)

T3

w

W e RYS3 bR = RY so h(a) = (h1(a1), ha(ay), hs(as), ha(as))
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Neural Nets Definition

More output nodes

T1

Z2 o=h(Wuzx)
3

w

W e RS, bR o R so h(a) = (hi(a1), ha(az), ha(as), ha(aa))

Can think of this as a nonlinear mapping: ¢(x) = h(Wx)
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More layers

Becomes a network:
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Neural Nets Definition

More layers

Becomes a network:

each node is called a neuron it ayer hodenlayer1  hddenlaer2  outputlayer

h is called the activation function
e can use h(a) = 1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) = a

#layers refers to #hidden_layers (plus 1 or 2 for input/output layers)

deep neural nets can have many layers and millions of parameters

@ this is a feedforward, fully connected neural net, there are many
variants (convolutional nets, residual nets, recurrent nets, etc.)
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Neural Nets Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.
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Neural Nets Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

o for feedforward network, need to decide number of hidden layers,
number of neurons at each layer, activation functions, etc.

27 / 59



Math formulation

An L-layer neural net can be written as

F(x)=hL(Wrh 1 (W1 hy (Wiz)))
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Neural Nets Definition

Math formulation

An L-layer neural net can be written as

F(x)=hL(Wrh 1 (W1 hy (Wiz)))

input layer hidden layer 1 hidden layer 2 output layer

To ease notation, for a given input x, define recursively

o) = &, ay = WgOg_l, Oy — hg(ag) (f = 1, PPN L)
where
o W, € RPexDPe-1 is the weights between layer £ — 1 and /¢
e Dy =D,Dq,...,DL are numbers of neurons at each layer
e ay € RP! is input to layer ¢
e oy € RP¢ is output of layer ¢
e hy: RPr — RDP¢ js activation functions at layer £

28 / 59



Learning the model

No matter how complicated the model is, our goal is the same: minimize

N

1
F(Wl,...,WL):NZFn(Wl,...,WL)

n=1
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Neural Nets Definition

Learning the model

No matter how complicated the model is, our goal is the same: minimize

N
1
F(Wy,...,W,) = NZFn(Wl,...,WL)
n=1

where

| f(zn) — ynll3 for regression
F,(Wy,..., W) = I

(W1 L {ln (1 + D ktyn ef(“”")k*f(m")yn> for classification
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How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.
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How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:
e for a composite function f(g(w))
of _9f9g
ow  0g Ow

e for a composite function f(g1(w),...,gq(w))
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How to optimize such a complicated function?
Same thing: apply SGD! even if the model is nonconvex.
What is the gradient of this complicated function?
Chain rule is the only secret:

e for a composite function f(g(w))

of _0fog
ow  0g Ow

e for a composite function f(g1(w),...,gq(w))

0f _ -~ 01 05
ow P 0g; Ow
the simplest example f(g1(w), ga(w)) = g1(w)ga(w)

30 / 59



Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F, w.r.t. to w;;
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Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F, w.r.t. to w;;

8Fn o 8Fn 6@1' o GFn 8(wijoj) . 8Fn

8w,;j N Ga,» Gwij 8&1' 8w1~j - 6&1' Oj
OF, OF, do,
8@2' N 802' 8@2'
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Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F, w.r.t. to w;;

8Fn o 8Fn 6@1' o GFn 8(wijoj) . 8Fn0‘
8w¢j N Ga,» Gwij - 8&1' 8w1~j - 6&1' J

oF, 0F,do; Z OF, Oay, )
da;  Oo; da; Oay, (90 i(ai

31/ 59



Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F, w.r.t. to w;;

8Fn o 8Fn 6@1' o GFn 8(wijoj) . 8Fn0‘
8w¢j N Ga,» Gwij - 8&1' 8w1~j - 6&1' J

oF,  0F, do; OF,, Oay, B OF, \ .,
oa; N do; Oa; <Z Oay, Do; ) )_ ( - day, wkl) hi(al)
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Computing the derivative

Adding the subscript for layer:

OF,  OF,
Owyi;  Oag;

i | Poiac
3% (Z 8ag+1k.w£+1’k) vi(ae)

O¢—1,5
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Computing the derivative

Adding the subscript for layer:

OF,  OF,
Owyi;  Oag;

i | Poiac
3% (Z 8ag+1k.w£+1’k) vi(ae)

For the last layer, for square loss

OF, _ O(hii(aL) — Yn.i)?
day ; day ;

O¢—1,5
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Computing the derivative

Adding the subscript for layer:

oF, _ OF,
aw&ij 8&(71'

i | heilaei
3% (Z aam,cw“lv’f) vi(ae;)

For the last layer, for square loss

O, _ olhiilons) — e |
- 7 ) : =2(h % i) — 7 h i i
aaL,i 804_,1. ( L, (CLL, ) Yn, ) L, (CLL, )

O¢—1,5
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Computing the derivative

Adding the subscript for layer:

oF, _ OF,
aw&ij 8&(71'

i | heilaei
3% (Z aam,cw“lv’f) vi(ae;)

For the last layer, for square loss

O, _ olhiilons) — e |
- 7 ) : =2(h % i) — 7 h i i
aaL,i 804_,1. ( L, (CLL, ) Yn, ) L, (CLL, )

O¢—1,5

Exercise: try to do it for logistic loss yourself.
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Neural Nets Backpropagation

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

OF, OF, o7
oW,  da, 1

e RPexDe—1

dagt1

oF, B <W£1 Ol ) [ hlg(ag) if { <L
2(hi(aL) — yn) o h{ () else

6ag

where v1 0 v = (v11V21, -+ , U1pV2p) IS the element-wise product (a.k.a.
Hadamard product).

Verify yourself!
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Backpropagation
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W randomly.
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Backpropagation
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W randomly. Repeat:

@ randomly pick one data point n € [N]

@ forward propagation: for each layer / =1,...,L
e compute ay = Wyoy_1 and oy = hy(ay) (0p = x,)

© backward propagation: foreach {=1L,... 1
e compute

oF, {(W@T+1 o5 )ohy(ar) ifl<L
2

Oagy
day (hi(aL) —yn) o hl(ay) else

e update weights

oF, OF,

W[ < W[ — naWe = W[ — 7’]870,[0@71

34 / 59



Backpropagation
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W randomly. Repeat:

@ randomly pick one data point n € [N]

@ forward propagation: for each layer / =1,...,L
e compute ay = Wyo,—1 and oy = hy(ay) (0p = x,)

© backward propagation: foreach {=1L,... 1
e compute

0P, _ [(Whi ) omia)  ifr<L
aae (hL(a’L) yn) o hf_(a,_) else
e update weights

OF, OF,
Tow, = W' Tga, Ot

(Important: should W, be overwritten immediately in the last step?)

Wy~ W, —
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More tricks to optimize neural nets

Many variants based on Backprop
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Neural Nets Backpropagation

More tricks to optimize neural nets

Many variants based on Backprop

@ mini-batch: randomly sample a batch of examples to form a
stochastic gradient (common batch size: 32, 64, 128, etc.)

@ batch normalization: normalize the inputs of each neuron over the
mini-batch (to zero-mean and one-variance; c.f. Lec 1)

e momentum: make use of previous gradients (taking inspiration from
physics)

35 / 59



SGD with momentum (a simple version)

Initialize wg and velocity v =0
Fort=1,2,...
e form a stochastic gradient g;
@ update velocity v « aw + g; for some discount factor « € (0,1)

@ update weight wy + w;_1 — nv
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Neural Nets Backpropagation

SGD with momentum (a simple version)

Initialize wg and velocity v =0
Fort=1,2,...
e form a stochastic gradient g;
@ update velocity v « aw + g; for some discount factor « € (0,1)

@ update weight wy + w;_1 — nv

Updates for first few rounds:
® wi; = wo — Ngi
¢ Wy = w1 —ang: — 1Ng2
o w3 = wy — a’ng1 — angs — g3
@ .-
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Preventing overfitting
Overfitting

Overfitting is very likely since neural nets are too powerful.

Methods to overcome overfitting:

data augmentation
regularization
dropout

early stopping

37 / 59



Neural Nets Preventing overfitting

Data augmentation

Data: the more the better. How do we get more data?
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Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data

Affine . Elastic
Distortion Noise Deformation

Horizontal Random

flip Translation Hue Shit
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\ETEIMNSEI  Preventing overfitting

Regularization

L2 regularization: minimize

L
F'(Wh,...,W) =F(Wy,..., W) + 2> |[Will3
=1
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\ETEIMNSEI  Preventing overfitting

Regularization

L2 regularization: minimize
L
F'(Wi,..., W) = F(Wi,...,WL) + XY [|[Wi3

Simple change to the gradient:

OF' oF
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\ETEIMNSEI  Preventing overfitting

Regularization

L2 regularization: minimize

L
F'(Wh,...,W) =F(Wy,..., W) + 2> |[Will3

Simple change to the gradient:

OF' oF
8wi] 811)%]

+ 2 w;;

Introduce weight decaying effect
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Neural Nets Preventing overfitting

Dropout

Independently delete each neuron with a fixed probability (say 0.5),
during each iteration of Backprop (only for training, not for testing)

w O @
AN,
e

1}&%:‘0& A

e
AR RS
aYa\Y

Very effective, makes training faster as well
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Preventing overfitting
Early stopping

Stop training when the performance on validation set stops improving

/ Early stopping
0.20

T T T
e—e Training set loss
0.15 — Validation set loss |
0.10 4 -
2 0.05 - a
0.00
0 50 100 150 200 250

Time (epochs)
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Conclusions for neural nets

Deep neural networks

@ are hugely popular, achieving best performance on many problems
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Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems
@ do need a /ot of data to work well
@ take a /ot of time to train (need GPUs for massive parallel computing)
@ take some work to select architecture and hyperparameters

@ are still not well understood in theory
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