
CSCI567 Machine Learning (Fall 2024)

Prof. Dani Yogatama

University of Southern California

September 13, 2024

1 / 26



Linear Classifiers and Surrogate Losses

Outline

1 Linear Classifiers and Surrogate Losses

2 Logistic Regression

3 Perceptron

2 / 26



Linear Classifiers and Surrogate Losses

Classification

Recall the setup:

input (feature vector): x ∈ RD

output (label): y ∈ [C] = {1, 2, · · · ,C}
goal: learn a mapping f : RD → [C]

This lecture: binary classification

Number of classes: C = 2

Labels: {−1,+1} (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:

require carrying the training set

more like a heuristic

3 / 26



Linear Classifiers and Surrogate Losses

Classification

Recall the setup:

input (feature vector): x ∈ RD

output (label): y ∈ [C] = {1, 2, · · · ,C}
goal: learn a mapping f : RD → [C]

This lecture: binary classification

Number of classes: C = 2

Labels: {−1,+1} (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:

require carrying the training set

more like a heuristic

3 / 26



Linear Classifiers and Surrogate Losses

Classification

Recall the setup:

input (feature vector): x ∈ RD

output (label): y ∈ [C] = {1, 2, · · · ,C}
goal: learn a mapping f : RD → [C]

This lecture: binary classification

Number of classes: C = 2

Labels: {−1,+1} (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:

require carrying the training set

more like a heuristic

3 / 26



Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let’s follow the recipe:

Step 1. Pick a set of models F .

Again try linear models, but how to predict a label using wTx?

Sign of wTx predicts the label:

sign(wTx) =

{
+1 if wTx > 0
−1 if wTx ≤ 0

(Sometimes use sgn for sign too.)

4 / 26



Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let’s follow the recipe:

Step 1. Pick a set of models F .

Again try linear models, but how to predict a label using wTx?

Sign of wTx predicts the label:

sign(wTx) =

{
+1 if wTx > 0
−1 if wTx ≤ 0

(Sometimes use sgn for sign too.)

4 / 26



Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let’s follow the recipe:

Step 1. Pick a set of models F .

Again try linear models, but how to predict a label using wTx?

Sign of wTx predicts the label:

sign(wTx) =

{
+1 if wTx > 0
−1 if wTx ≤ 0

(Sometimes use sgn for sign too.)

4 / 26



Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let’s follow the recipe:

Step 1. Pick a set of models F .

Again try linear models, but how to predict a label using wTx?

Sign of wTx predicts the label:

sign(wTx) =

{
+1 if wTx > 0
−1 if wTx ≤ 0

(Sometimes use sgn for sign too.)

4 / 26



Linear Classifiers and Surrogate Losses

The models

The set of (separating) hyperplanes:

F = {f(x) = sgn(wTx) | w ∈ RD}

Good choice for linearly separable data, i.e., ∃w s.t.

sgn(wTxn) = yn

or ynw
Txn > 0

for all n ∈ [N ].

5 / 26



Linear Classifiers and Surrogate Losses

The models

The set of (separating) hyperplanes:

F = {f(x) = sgn(wTx) | w ∈ RD}

Good choice for linearly separable data, i.e., ∃w s.t.

sgn(wTxn) = yn

or ynw
Txn > 0

for all n ∈ [N ].

5 / 26



Linear Classifiers and Surrogate Losses

The models

The set of (separating) hyperplanes:

F = {f(x) = sgn(wTx) | w ∈ RD}

Good choice for linearly separable data, i.e., ∃w s.t.

sgn(wTxn) = yn or ynw
Txn > 0

for all n ∈ [N ].

5 / 26



Linear Classifiers and Surrogate Losses

The models

Still makes sense for “almost” linearly separable data

6 / 26



Linear Classifiers and Surrogate Losses

The models

For clearly not linearly separable data,

Again can apply a nonlinear mapping Φ:

F = {f(x) = sgn(wTΦ(x)) | w ∈ RM}

More discussions in the next two lectures.

7 / 26



Linear Classifiers and Surrogate Losses

The models

For clearly not linearly separable data,

Again can apply a nonlinear mapping Φ:

F = {f(x) = sgn(wTΦ(x)) | w ∈ RM}

More discussions in the next two lectures.

7 / 26



Linear Classifiers and Surrogate Losses

0-1 Loss

Step 2. Define error/loss L(y′, y).

Most natural one for classification: 0-1 loss L(y′, y) = I[y′ ̸= y]

For classification, more convenient to look at the loss as a function of
ywTx. That is, with

ℓ0-1(z) = I[z ≤ 0]

the loss for hyperplane w on example (x, y) is ℓ0-1(yw
Tx)

8 / 26



Linear Classifiers and Surrogate Losses

0-1 Loss

Step 2. Define error/loss L(y′, y).

Most natural one for classification: 0-1 loss L(y′, y) = I[y′ ̸= y]

For classification, more convenient to look at the loss as a function of
ywTx. That is, with

ℓ0-1(z) = I[z ≤ 0]

the loss for hyperplane w on example (x, y) is ℓ0-1(yw
Tx)

8 / 26



Linear Classifiers and Surrogate Losses

0-1 Loss

Step 2. Define error/loss L(y′, y).

Most natural one for classification: 0-1 loss L(y′, y) = I[y′ ̸= y]

For classification, more convenient to look at the loss as a function of
ywTx. That is, with

ℓ0-1(z) = I[z ≤ 0]

the loss for hyperplane w on example (x, y) is ℓ0-1(yw
Tx)

8 / 26



Linear Classifiers and Surrogate Losses

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

Even worse, minimizing 0-1 loss is NP-hard in general.

9 / 26



Linear Classifiers and Surrogate Losses

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

Even worse, minimizing 0-1 loss is NP-hard in general.

9 / 26



Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

perceptron loss ℓperceptron(z) = max{0,−z} (used in Perceptron)

hinge loss ℓhinge(z) = max{0, 1− z}(used in SVM and many others)

logistic loss ℓlogistic(z) = log(1 + exp(−z)) (used in logistic regression;
the base of log doesn’t matter)

10 / 26



Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

perceptron loss ℓperceptron(z) = max{0,−z} (used in Perceptron)

hinge loss ℓhinge(z) = max{0, 1− z}(used in SVM and many others)

logistic loss ℓlogistic(z) = log(1 + exp(−z)) (used in logistic regression;
the base of log doesn’t matter)

10 / 26



Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

perceptron loss ℓperceptron(z) = max{0,−z} (used in Perceptron)

hinge loss ℓhinge(z) = max{0, 1− z}(used in SVM and many others)

logistic loss ℓlogistic(z) = log(1 + exp(−z)) (used in logistic regression;
the base of log doesn’t matter)

10 / 26



Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

perceptron loss ℓperceptron(z) = max{0,−z} (used in Perceptron)

hinge loss ℓhinge(z) = max{0, 1− z}(used in SVM and many others)

logistic loss ℓlogistic(z) = log(1 + exp(−z)) (used in logistic regression;
the base of log doesn’t matter)

10 / 26



Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

w∗ = argmin
w∈RD

N∑
n=1

ℓ(ynw
Txn) = argmin

w∈RD

1

N

N∑
n=1

ℓ(ynw
Txn)

where ℓ(·) can be perceptron/hinge/logistic loss

no closed-form in general (unlike linear regression)

can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w = 0),
but the algorithm derived from this perspective does.

11 / 26



Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

w∗ = argmin
w∈RD

N∑
n=1

ℓ(ynw
Txn) = argmin

w∈RD

1

N

N∑
n=1

ℓ(ynw
Txn)

where ℓ(·) can be perceptron/hinge/logistic loss

no closed-form in general (unlike linear regression)

can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w = 0),
but the algorithm derived from this perspective does.

11 / 26



Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

w∗ = argmin
w∈RD

N∑
n=1

ℓ(ynw
Txn) = argmin

w∈RD

1

N

N∑
n=1

ℓ(ynw
Txn)

where ℓ(·) can be perceptron/hinge/logistic loss

no closed-form in general (unlike linear regression)

can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w = 0),
but the algorithm derived from this perspective does.

11 / 26



Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

w∗ = argmin
w∈RD

N∑
n=1

ℓ(ynw
Txn) = argmin

w∈RD

1

N

N∑
n=1

ℓ(ynw
Txn)

where ℓ(·) can be perceptron/hinge/logistic loss

no closed-form in general (unlike linear regression)

can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense

(try w = 0),
but the algorithm derived from this perspective does.

11 / 26



Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

w∗ = argmin
w∈RD

N∑
n=1

ℓ(ynw
Txn) = argmin

w∈RD

1

N

N∑
n=1

ℓ(ynw
Txn)

where ℓ(·) can be perceptron/hinge/logistic loss

no closed-form in general (unlike linear regression)

can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w = 0),
but the algorithm derived from this perspective does.

11 / 26



Logistic Regression

Outline

1 Linear Classifiers and Surrogate Losses

2 Logistic Regression

3 Perceptron

12 / 26



Logistic Regression

A simple view

In one sentence: find the minimizer of

F (w) =
1

N

N∑
n=1

ℓlogistic(ynw
Txn)

=
1

N

N∑
n=1

ln(1 + e−ynwTxn)

Before optimizing it: why logistic loss? and why “regression”?

13 / 26



Logistic Regression

A simple view

In one sentence: find the minimizer of

F (w) =
1

N

N∑
n=1

ℓlogistic(ynw
Txn)

=
1

N

N∑
n=1

ln(1 + e−ynwTxn)

Before optimizing it: why logistic loss? and why “regression”?

13 / 26



Logistic Regression A probabilistic view

Predicting probability

Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities

One way: sigmoid function + linear model

P(y = +1 | x;w) = σ(wTx)

where σ is the sigmoid function:

σ(z) =
1

1 + e−z

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

14 / 26



Logistic Regression A probabilistic view

Predicting probability

Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities

One way: sigmoid function + linear model

P(y = +1 | x;w) = σ(wTx)

where σ is the sigmoid function:

σ(z) =
1

1 + e−z

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

14 / 26



Logistic Regression A probabilistic view

Properties

Properties of sigmoid σ(z) = 1
1+e−z

between 0 and 1 (good as probability)

σ(wTx) ≥ 0.5⇔ wTx ≥ 0, consistent
with predicting the label with sgn(wTx)

larger wTx⇒ larger σ(wTx) ⇒ higher
confidence in label 1

σ(z) + σ(−z) = 1 for all z

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The probability of label −1 is naturally

1− P(y = +1 | x;w) = 1− σ(wTx) = σ(−wTx)

and thus

P(y | x;w) = σ(ywTx) =
1

1 + e−ywTx

15 / 26



Logistic Regression A probabilistic view

Properties

Properties of sigmoid σ(z) = 1
1+e−z

between 0 and 1 (good as probability)

σ(wTx) ≥ 0.5⇔ wTx ≥ 0, consistent
with predicting the label with sgn(wTx)

larger wTx⇒ larger σ(wTx) ⇒ higher
confidence in label 1

σ(z) + σ(−z) = 1 for all z

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The probability of label −1 is naturally

1− P(y = +1 | x;w) = 1− σ(wTx) = σ(−wTx)

and thus

P(y | x;w) = σ(ywTx) =
1

1 + e−ywTx

15 / 26



Logistic Regression A probabilistic view

Properties

Properties of sigmoid σ(z) = 1
1+e−z

between 0 and 1 (good as probability)

σ(wTx) ≥ 0.5⇔ wTx ≥ 0, consistent
with predicting the label with sgn(wTx)

larger wTx⇒ larger σ(wTx) ⇒ higher
confidence in label 1

σ(z) + σ(−z) = 1 for all z

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The probability of label −1 is naturally

1− P(y = +1 | x;w) = 1− σ(wTx) = σ(−wTx)

and thus

P(y | x;w) = σ(ywTx) =
1

1 + e−ywTx

15 / 26



Logistic Regression A probabilistic view

Properties

Properties of sigmoid σ(z) = 1
1+e−z

between 0 and 1 (good as probability)

σ(wTx) ≥ 0.5⇔ wTx ≥ 0, consistent
with predicting the label with sgn(wTx)

larger wTx⇒ larger σ(wTx) ⇒ higher
confidence in label 1

σ(z) + σ(−z) = 1 for all z
−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The probability of label −1 is naturally

1− P(y = +1 | x;w) = 1− σ(wTx) = σ(−wTx)

and thus

P(y | x;w) = σ(ywTx) =
1

1 + e−ywTx

15 / 26



Logistic Regression A probabilistic view

Properties

Properties of sigmoid σ(z) = 1
1+e−z

between 0 and 1 (good as probability)

σ(wTx) ≥ 0.5⇔ wTx ≥ 0, consistent
with predicting the label with sgn(wTx)

larger wTx⇒ larger σ(wTx) ⇒ higher
confidence in label 1

σ(z) + σ(−z) = 1 for all z
−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The probability of label −1 is naturally

1− P(y = +1 | x;w) = 1− σ(wTx) = σ(−wTx)

and thus

P(y | x;w) = σ(ywTx) =
1

1 + e−ywTx

15 / 26



Logistic Regression A probabilistic view

Properties

Properties of sigmoid σ(z) = 1
1+e−z

between 0 and 1 (good as probability)

σ(wTx) ≥ 0.5⇔ wTx ≥ 0, consistent
with predicting the label with sgn(wTx)

larger wTx⇒ larger σ(wTx) ⇒ higher
confidence in label 1

σ(z) + σ(−z) = 1 for all z
−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The probability of label −1 is naturally

1− P(y = +1 | x;w) = 1− σ(wTx) = σ(−wTx)

and thus

P(y | x;w) = σ(ywTx) =
1

1 + e−ywTx

15 / 26



Logistic Regression A probabilistic view

How to regress with discrete labels?

What we observe are labels, not probabilities.

Take a probabilistic view

assume data is independently generated in this way by some w

perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y1, · · · , yn given
x1, · · · , xn, as a function of some w?

P (w) =
N∏

n=1

P(yn | xn;w)

MLE: find w∗ that maximizes the probability P (w)

16 / 26



Logistic Regression A probabilistic view

How to regress with discrete labels?

What we observe are labels, not probabilities.

Take a probabilistic view

assume data is independently generated in this way by some w

perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y1, · · · , yn given
x1, · · · , xn, as a function of some w?

P (w) =
N∏

n=1

P(yn | xn;w)

MLE: find w∗ that maximizes the probability P (w)

16 / 26



Logistic Regression A probabilistic view

How to regress with discrete labels?

What we observe are labels, not probabilities.

Take a probabilistic view

assume data is independently generated in this way by some w

perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y1, · · · , yn given
x1, · · · , xn, as a function of some w?

P (w) =
N∏

n=1

P(yn | xn;w)

MLE: find w∗ that maximizes the probability P (w)

16 / 26



Logistic Regression A probabilistic view

The MLE solution

w∗ = argmax
w

P (w) = argmax
w

N∏
n=1

P(yn | xn;w)

= argmax
w

N∑
n=1

lnP(yn | xn;w) = argmin
w

N∑
n=1

− lnP(yn | xn;w)

= argmin
w

N∑
n=1

ln(1 + e−ynwTxn) = argmin
w

N∑
n=1

ℓlogistic(ynw
Txn)

= argmin
w

F (w)

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!

17 / 26



Logistic Regression A probabilistic view

The MLE solution

w∗ = argmax
w

P (w) = argmax
w

N∏
n=1

P(yn | xn;w)

= argmax
w

N∑
n=1

lnP(yn | xn;w)

= argmin
w

N∑
n=1

− lnP(yn | xn;w)

= argmin
w

N∑
n=1

ln(1 + e−ynwTxn) = argmin
w

N∑
n=1

ℓlogistic(ynw
Txn)

= argmin
w

F (w)

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!

17 / 26



Logistic Regression A probabilistic view

The MLE solution

w∗ = argmax
w

P (w) = argmax
w

N∏
n=1

P(yn | xn;w)

= argmax
w

N∑
n=1

lnP(yn | xn;w) = argmin
w

N∑
n=1

− lnP(yn | xn;w)

= argmin
w

N∑
n=1

ln(1 + e−ynwTxn) = argmin
w

N∑
n=1

ℓlogistic(ynw
Txn)

= argmin
w

F (w)

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!

17 / 26



Logistic Regression A probabilistic view

The MLE solution

w∗ = argmax
w

P (w) = argmax
w

N∏
n=1

P(yn | xn;w)

= argmax
w

N∑
n=1

lnP(yn | xn;w) = argmin
w

N∑
n=1

− lnP(yn | xn;w)

= argmin
w

N∑
n=1

ln(1 + e−ynwTxn)

= argmin
w

N∑
n=1

ℓlogistic(ynw
Txn)

= argmin
w

F (w)

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!

17 / 26



Logistic Regression A probabilistic view

The MLE solution

w∗ = argmax
w

P (w) = argmax
w

N∏
n=1

P(yn | xn;w)

= argmax
w

N∑
n=1

lnP(yn | xn;w) = argmin
w

N∑
n=1

− lnP(yn | xn;w)

= argmin
w

N∑
n=1

ln(1 + e−ynwTxn) = argmin
w

N∑
n=1

ℓlogistic(ynw
Txn)

= argmin
w

F (w)

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!

17 / 26



Logistic Regression A probabilistic view

The MLE solution

w∗ = argmax
w

P (w) = argmax
w

N∏
n=1

P(yn | xn;w)

= argmax
w

N∑
n=1

lnP(yn | xn;w) = argmin
w

N∑
n=1

− lnP(yn | xn;w)

= argmin
w

N∑
n=1

ln(1 + e−ynwTxn) = argmin
w

N∑
n=1

ℓlogistic(ynw
Txn)

= argmin
w

F (w)

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!

17 / 26



Logistic Regression Algorithms

Let’s apply SGD again

w ← w − η∇̃F (w)

= w − η∇wℓlogistic(ynw
Txn) (n ∈ [N ] is drawn u.a.r.)

= w − η

(
∂ℓlogistic(z)

∂z

∣∣∣
z=ynwTxn

)
ynxn

= w − η

(
−e−z

1 + e−z

∣∣∣
z=ynwTxn

)
ynxn

= w + ησ(−ynwTxn)ynxn

= w + ηP(−yn | xn;w)ynxn

This is a soft version of Perceptron!

P(−yn|xn;w) versus I[yn ̸= sgn(wTxn)]

18 / 26



Logistic Regression Algorithms

Let’s apply SGD again

w ← w − η∇̃F (w)

= w − η∇wℓlogistic(ynw
Txn) (n ∈ [N ] is drawn u.a.r.)

= w − η

(
∂ℓlogistic(z)

∂z

∣∣∣
z=ynwTxn

)
ynxn

= w − η

(
−e−z

1 + e−z

∣∣∣
z=ynwTxn

)
ynxn

= w + ησ(−ynwTxn)ynxn

= w + ηP(−yn | xn;w)ynxn

This is a soft version of Perceptron!

P(−yn|xn;w) versus I[yn ̸= sgn(wTxn)]

18 / 26



Logistic Regression Algorithms

Let’s apply SGD again

w ← w − η∇̃F (w)

= w − η∇wℓlogistic(ynw
Txn) (n ∈ [N ] is drawn u.a.r.)

= w − η

(
∂ℓlogistic(z)

∂z

∣∣∣
z=ynwTxn

)
ynxn

= w − η

(
−e−z

1 + e−z

∣∣∣
z=ynwTxn

)
ynxn

= w + ησ(−ynwTxn)ynxn

= w + ηP(−yn | xn;w)ynxn

This is a soft version of Perceptron!

P(−yn|xn;w) versus I[yn ̸= sgn(wTxn)]

18 / 26



Logistic Regression Algorithms

Let’s apply SGD again

w ← w − η∇̃F (w)

= w − η∇wℓlogistic(ynw
Txn) (n ∈ [N ] is drawn u.a.r.)

= w − η

(
∂ℓlogistic(z)

∂z

∣∣∣
z=ynwTxn

)
ynxn

= w − η

(
−e−z

1 + e−z

∣∣∣
z=ynwTxn

)
ynxn

= w + ησ(−ynwTxn)ynxn

= w + ηP(−yn | xn;w)ynxn

This is a soft version of Perceptron!

P(−yn|xn;w) versus I[yn ̸= sgn(wTxn)]

18 / 26



Logistic Regression Algorithms

Let’s apply SGD again

w ← w − η∇̃F (w)

= w − η∇wℓlogistic(ynw
Txn) (n ∈ [N ] is drawn u.a.r.)

= w − η

(
∂ℓlogistic(z)

∂z

∣∣∣
z=ynwTxn

)
ynxn

= w − η

(
−e−z

1 + e−z

∣∣∣
z=ynwTxn

)
ynxn

= w + ησ(−ynwTxn)ynxn

= w + ηP(−yn | xn;w)ynxn

This is a soft version of Perceptron!

P(−yn|xn;w) versus I[yn ̸= sgn(wTxn)]

18 / 26



Logistic Regression Algorithms

Let’s apply SGD again

w ← w − η∇̃F (w)

= w − η∇wℓlogistic(ynw
Txn) (n ∈ [N ] is drawn u.a.r.)

= w − η

(
∂ℓlogistic(z)

∂z

∣∣∣
z=ynwTxn

)
ynxn

= w − η

(
−e−z

1 + e−z

∣∣∣
z=ynwTxn

)
ynxn

= w + ησ(−ynwTxn)ynxn

= w + ηP(−yn | xn;w)ynxn

This is a soft version of Perceptron!

P(−yn|xn;w) versus I[yn ̸= sgn(wTxn)]

18 / 26



Logistic Regression Algorithms

Let’s apply SGD again

w ← w − η∇̃F (w)

= w − η∇wℓlogistic(ynw
Txn) (n ∈ [N ] is drawn u.a.r.)

= w − η

(
∂ℓlogistic(z)

∂z

∣∣∣
z=ynwTxn

)
ynxn

= w − η

(
−e−z

1 + e−z

∣∣∣
z=ynwTxn

)
ynxn

= w + ησ(−ynwTxn)ynxn

= w + ηP(−yn | xn;w)ynxn

This is a soft version of Perceptron!

P(−yn|xn;w) versus I[yn ̸= sgn(wTxn)]

18 / 26



Logistic Regression Algorithms

Applying Newton to logistic loss

∇wℓlogistic(ynw
Txn) = −σ(−ynwTxn)ynxn

∇2
wℓlogistic(ynw

Txn) =

(
∂σ(z)

∂z

∣∣∣
z=−ynwTxn

)
y2nxnx

T
n

=

(
e−z

(1 + e−z)2

∣∣∣
z=−ynwTxn

)
xnx

T
n

= σ(ynw
Txn)

(
1− σ(ynw

Txn)
)
xnx

T
n

Exercises:

why is the Hessian of logistic loss positive semidefinite?

can we apply Newton method to perceptron/hinge loss?

19 / 26



Logistic Regression Algorithms

Applying Newton to logistic loss

∇wℓlogistic(ynw
Txn) = −σ(−ynwTxn)ynxn

∇2
wℓlogistic(ynw

Txn) =

(
∂σ(z)

∂z

∣∣∣
z=−ynwTxn

)
y2nxnx

T
n

=

(
e−z

(1 + e−z)2

∣∣∣
z=−ynwTxn

)
xnx

T
n

= σ(ynw
Txn)

(
1− σ(ynw

Txn)
)
xnx

T
n

Exercises:

why is the Hessian of logistic loss positive semidefinite?

can we apply Newton method to perceptron/hinge loss?

19 / 26



Logistic Regression Algorithms

Applying Newton to logistic loss

∇wℓlogistic(ynw
Txn) = −σ(−ynwTxn)ynxn

∇2
wℓlogistic(ynw

Txn) =

(
∂σ(z)

∂z

∣∣∣
z=−ynwTxn

)
y2nxnx

T
n

=

(
e−z

(1 + e−z)2

∣∣∣
z=−ynwTxn

)
xnx

T
n

= σ(ynw
Txn)

(
1− σ(ynw

Txn)
)
xnx

T
n

Exercises:

why is the Hessian of logistic loss positive semidefinite?

can we apply Newton method to perceptron/hinge loss?

19 / 26



Logistic Regression Algorithms

Applying Newton to logistic loss

∇wℓlogistic(ynw
Txn) = −σ(−ynwTxn)ynxn

∇2
wℓlogistic(ynw

Txn) =

(
∂σ(z)

∂z

∣∣∣
z=−ynwTxn

)
y2nxnx

T
n

=

(
e−z

(1 + e−z)2

∣∣∣
z=−ynwTxn

)
xnx

T
n

= σ(ynw
Txn)

(
1− σ(ynw

Txn)
)
xnx

T
n

Exercises:

why is the Hessian of logistic loss positive semidefinite?

can we apply Newton method to perceptron/hinge loss?

19 / 26



Logistic Regression Algorithms

Applying Newton to logistic loss

∇wℓlogistic(ynw
Txn) = −σ(−ynwTxn)ynxn

∇2
wℓlogistic(ynw

Txn) =

(
∂σ(z)

∂z

∣∣∣
z=−ynwTxn

)
y2nxnx

T
n

=

(
e−z

(1 + e−z)2

∣∣∣
z=−ynwTxn

)
xnx

T
n

= σ(ynw
Txn)

(
1− σ(ynw

Txn)
)
xnx

T
n

Exercises:

why is the Hessian of logistic loss positive semidefinite?

can we apply Newton method to perceptron/hinge loss?

19 / 26



Logistic Regression Algorithms

Applying Newton to logistic loss

∇wℓlogistic(ynw
Txn) = −σ(−ynwTxn)ynxn

∇2
wℓlogistic(ynw

Txn) =

(
∂σ(z)

∂z

∣∣∣
z=−ynwTxn

)
y2nxnx

T
n

=

(
e−z

(1 + e−z)2

∣∣∣
z=−ynwTxn

)
xnx

T
n

= σ(ynw
Txn)

(
1− σ(ynw

Txn)
)
xnx

T
n

Exercises:

why is the Hessian of logistic loss positive semidefinite?

can we apply Newton method to perceptron/hinge loss?

19 / 26



Perceptron

Outline

1 Linear Classifiers and Surrogate Losses

2 Logistic Regression

3 Perceptron

20 / 26



Perceptron

Recall the perceptron loss

F (w) =
1

N

N∑
n=1

ℓperceptron(ynw
Txn)

=
1

N

N∑
n=1

max{0,−ynwTxn}

Let’s approximately minimize it with GD/SGD.

21 / 26



Perceptron

Recall the perceptron loss

F (w) =
1

N

N∑
n=1

ℓperceptron(ynw
Txn)

=
1

N

N∑
n=1

max{0,−ynwTxn}

Let’s approximately minimize it with GD/SGD.

21 / 26



Perceptron

Applying GD to perceptron loss

Objective

F (w) =
1

N

N∑
n=1

max{0,−ynwTxn}

Gradient (or really sub-gradient) is

∇F (w) =
1

N

N∑
n=1

−I[ynwTxn ≤ 0]ynxn

(only misclassified examples contribute to the gradient)

GD update

w ← w +
η

N

N∑
n=1

I[ynwTxn ≤ 0]ynxn

Slow: each update makes one pass of the entire training set!

22 / 26



Perceptron

Applying GD to perceptron loss

Objective

F (w) =
1

N

N∑
n=1

max{0,−ynwTxn}

Gradient (or really sub-gradient) is

∇F (w) =
1

N

N∑
n=1

−I[ynwTxn ≤ 0]ynxn

(only misclassified examples contribute to the gradient)

GD update

w ← w +
η

N

N∑
n=1

I[ynwTxn ≤ 0]ynxn

Slow: each update makes one pass of the entire training set!

22 / 26



Perceptron

Applying GD to perceptron loss

Objective

F (w) =
1

N

N∑
n=1

max{0,−ynwTxn}

Gradient (or really sub-gradient) is

∇F (w) =
1

N

N∑
n=1

−I[ynwTxn ≤ 0]ynxn

(only misclassified examples contribute to the gradient)

GD update

w ← w +
η

N

N∑
n=1

I[ynwTxn ≤ 0]ynxn

Slow: each update makes one pass of the entire training set!

22 / 26



Perceptron

Applying GD to perceptron loss

Objective

F (w) =
1

N

N∑
n=1

max{0,−ynwTxn}

Gradient (or really sub-gradient) is

∇F (w) =
1

N

N∑
n=1

−I[ynwTxn ≤ 0]ynxn

(only misclassified examples contribute to the gradient)

GD update

w ← w +
η

N

N∑
n=1

I[ynwTxn ≤ 0]ynxn

Slow: each update makes one pass of the entire training set!
22 / 26



Perceptron

Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n ∈ [N ] uniformly at random, let

∇̃F (w(t)) = −I[ynwTxn ≤ 0]ynxn

clearly unbiased (convince yourself).

SGD update:
w ← w + ηI[ynwTxn ≤ 0]ynxn

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!

23 / 26



Perceptron

Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n ∈ [N ] uniformly at random, let

∇̃F (w(t)) = −I[ynwTxn ≤ 0]ynxn

clearly unbiased (convince yourself).

SGD update:
w ← w + ηI[ynwTxn ≤ 0]ynxn

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!

23 / 26



Perceptron

Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n ∈ [N ] uniformly at random, let

∇̃F (w(t)) = −I[ynwTxn ≤ 0]ynxn

clearly unbiased (convince yourself).

SGD update:
w ← w + ηI[ynwTxn ≤ 0]ynxn

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!

23 / 26



Perceptron

Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n ∈ [N ] uniformly at random, let

∇̃F (w(t)) = −I[ynwTxn ≤ 0]ynxn

clearly unbiased (convince yourself).

SGD update:
w ← w + ηI[ynwTxn ≤ 0]ynxn

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!

23 / 26



Perceptron

Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n ∈ [N ] uniformly at random, let

∇̃F (w(t)) = −I[ynwTxn ≤ 0]ynxn

clearly unbiased (convince yourself).

SGD update:
w ← w + ηI[ynwTxn ≤ 0]ynxn

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!

23 / 26



Perceptron

The Perceptron Algorithm

Perceptron algorithm is SGD with η = 1 applied to perceptron loss:

Repeat:

Pick a data point xn uniformly at random

If sgn(wTxn) ̸= yn
w ← w + ynxn

Note:

w is always a linear combination of the training examples

why η = 1? Does not really matter in terms of prediction of w

24 / 26



Perceptron

The Perceptron Algorithm

Perceptron algorithm is SGD with η = 1 applied to perceptron loss:

Repeat:

Pick a data point xn uniformly at random

If sgn(wTxn) ̸= yn
w ← w + ynxn

Note:

w is always a linear combination of the training examples

why η = 1? Does not really matter in terms of prediction of w

24 / 26



Perceptron

The Perceptron Algorithm

Perceptron algorithm is SGD with η = 1 applied to perceptron loss:

Repeat:

Pick a data point xn uniformly at random

If sgn(wTxn) ̸= yn
w ← w + ynxn

Note:

w is always a linear combination of the training examples

why η = 1? Does not really matter in terms of prediction of w

24 / 26



Perceptron

The Perceptron Algorithm

Perceptron algorithm is SGD with η = 1 applied to perceptron loss:

Repeat:

Pick a data point xn uniformly at random

If sgn(wTxn) ̸= yn
w ← w + ynxn

Note:

w is always a linear combination of the training examples

why η = 1? Does not really matter in terms of prediction of w

24 / 26



Perceptron

Why does it make sense?

If the current weight w makes a mistake

ynw
Txn < 0

then after the update w′ = w + ynxn we have

ynw
′Txn = ynw

Txn + y2nx
T
nxn ≥ ynw

Txn

Thus it is more likely to get it right after the update.

25 / 26



Perceptron

Why does it make sense?

If the current weight w makes a mistake

ynw
Txn < 0

then after the update w′ = w + ynxn we have

ynw
′Txn = ynw

Txn + y2nx
T
nxn ≥ ynw

Txn

Thus it is more likely to get it right after the update.

25 / 26



Perceptron

Why does it make sense?

If the current weight w makes a mistake

ynw
Txn < 0

then after the update w′ = w + ynxn we have

ynw
′Txn = ynw

Txn + y2nx
T
nxn ≥ ynw

Txn

Thus it is more likely to get it right after the update.

25 / 26



Perceptron

Any theory?

(HW 1) If training set is linearly separable

Perceptron converges in a finite number
of steps

training error is 0

There are also guarantees when the data are not linearly separable.

26 / 26



Perceptron

Any theory?

(HW 1) If training set is linearly separable

Perceptron converges in a finite number
of steps

training error is 0

There are also guarantees when the data are not linearly separable.

26 / 26


