CSCI567 Machine Learning (Fall 2024)

Prof. Dani Yogatama

University of Southern California

September 13, 2024

Outline

1 Linear Classifiers and Surrogate Losses

Classification

Recall the setup:

- input (feature vector): $\boldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$
- output (label): $y \in [\mathsf{C}] = \{1, 2, \cdots, \mathsf{C}\}$
- goal: learn a mapping $f : \mathbb{R}^{\mathsf{D}} \to [\mathsf{C}]$

Classification

Recall the setup:

- input (feature vector): $\boldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$
- output (label): $y \in [\mathsf{C}] = \{1, 2, \cdots, \mathsf{C}\}$
- goal: learn a mapping $f : \mathbb{R}^{\mathsf{D}} \to [\mathsf{C}]$

This lecture: binary classification

- Number of classes: C = 2
- Labels: $\{-1, +1\}$ (cat or dog, fraud or not, price up or down...)

Classification

Recall the setup:

- input (feature vector): $\boldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$
- output (label): $y \in [\mathsf{C}] = \{1, 2, \cdots, \mathsf{C}\}$
- goal: learn a mapping $f : \mathbb{R}^{\mathsf{D}} \to [\mathsf{C}]$

This lecture: binary classification

- Number of classes: C = 2
- Labels: $\{-1,+1\}$ (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:

- require carrying the training set
- more like a heuristic

Let's follow the recipe:

Step 1. Pick a set of models \mathcal{F} .

Let's follow the recipe:

Step 1. Pick a set of models \mathcal{F} .

Again try linear models, but how to predict a label using $w^{\mathrm{T}}x$?

Let's follow the recipe:

Step 1. Pick a set of models \mathcal{F} .

Again try linear models, but how to predict a label using $w^{\mathrm{T}}x$?

Let's follow the recipe:

Step 1. Pick a set of models \mathcal{F} .

Again try linear models, but how to predict a label using $w^{\mathrm{T}}x$?

Sign of $w^{\mathrm{T}}x$ predicts the label:

$$\mathsf{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) = \left\{ \begin{array}{ll} +1 & \text{if } \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} > 0 \\ -1 & \text{if } \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \leq 0 \end{array} \right.$$

(Sometimes use sgn for sign too.)

The set of (separating) hyperplanes:

$$\mathcal{F} = \{f(\boldsymbol{x}) = \mathsf{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

The set of (separating) hyperplanes:

$$\mathcal{F} = \{f(\boldsymbol{x}) = \mathsf{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

Good choice for *linearly separable* data, i.e., $\exists w \text{ s.t.}$

$$\operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_{n}) = y_{n}$$

for all $n \in [N]$.

The set of (separating) hyperplanes:

$$\mathcal{F} = \{f(\boldsymbol{x}) = \mathsf{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

Good choice for *linearly separable* data, i.e., $\exists w$ s.t.

$$\operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_{n}) = y_{n}$$
 or $y_{n}\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_{n} > 0$

for all $n \in [N]$.

Still makes sense for "almost" linearly separable data

For clearly not linearly separable data,

For clearly not linearly separable data,

Again can apply a **nonlinear mapping** Φ :

$$\mathcal{F} = \{f(\boldsymbol{x}) = \mathsf{sgn}(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{x})) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$$

More discussions in the next two lectures.

0-1 Loss

Step 2. Define error/loss L(y', y).

0-1 Loss

Step 2. Define error/loss L(y', y).

Most natural one for classification: **0-1** loss $L(y', y) = \mathbb{I}[y' \neq y]$

0-1 Loss

Step 2. Define error/loss L(y', y).

Most natural one for classification: 0-1 loss $L(y',y) = \mathbb{I}[y' \neq y]$

For classification, more convenient to look at the loss as a function of $yw^{T}x$. That is, with

 $\ell_{\text{0-1}}(z) = \mathbb{I}[z \le 0]$

the loss for hyperplane ${m w}$ on example $({m x},y)$ is $\ell_{0-1}(y{m w}^{\mathrm{T}}{m x})$

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

Even worse, minimizing 0-1 loss is NP-hard in general.

Solution: find a convex surrogate loss

Solution: find a convex surrogate loss

• perceptron loss $\ell_{perceptron}(z) = \max\{0, -z\}$ (used in Perceptron)

Solution: find a convex surrogate loss

• perceptron loss $\ell_{perceptron}(z) = \max\{0, -z\}$ (used in Perceptron)

• hinge loss $\ell_{hinge}(z) = \max\{0, 1-z\}$ (used in SVM and many others)

Solution: find a convex surrogate loss

- perceptron loss $\ell_{perceptron}(z) = \max\{0, -z\}$ (used in Perceptron)
- hinge loss $\ell_{hinge}(z) = \max\{0, 1-z\}$ (used in SVM and many others)
- logistic loss $\ell_{\text{logistic}}(z) = \log(1 + \exp(-z))$ (used in logistic regression; the base of log doesn't matter)

Step 3. Find ERM:

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w}\in\mathbb{R}^{\mathsf{D}}} \sum_{n=1}^N \ell(y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n) = \operatorname*{argmin}_{oldsymbol{w}\in\mathbb{R}^{\mathsf{D}}} rac{1}{N} \sum_{n=1}^N \ell(y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n)$$

where $\ell(\cdot)$ can be perceptron/hinge/logistic loss

Step 3. Find ERM:

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w}\in\mathbb{R}^{\mathsf{D}}} \sum_{n=1}^N \ell(y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n) = \operatorname*{argmin}_{oldsymbol{w}\in\mathbb{R}^{\mathsf{D}}} rac{1}{N} \sum_{n=1}^N \ell(y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n)$$

where $\ell(\cdot)$ can be perceptron/hinge/logistic loss

• no closed-form in general (unlike linear regression)

Step 3. Find ERM:

$$\boldsymbol{w}^* = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} \sum_{n=1}^{N} \ell(y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} \frac{1}{N} \sum_{n=1}^{N} \ell(y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n)$$

where $\ell(\cdot)$ can be perceptron/hinge/logistic loss

- no closed-form in general (unlike linear regression)
- can apply general convex optimization methods

Step 3. Find ERM:

$$\boldsymbol{w}^* = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} \sum_{n=1}^{N} \ell(y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} \frac{1}{N} \sum_{n=1}^{N} \ell(y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n)$$

where $\ell(\cdot)$ can be perceptron/hinge/logistic loss

- no closed-form in general (unlike linear regression)
- can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense

Step 3. Find ERM:

$$\boldsymbol{w}^* = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} \sum_{n=1}^{N} \ell(y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} \frac{1}{N} \sum_{n=1}^{N} \ell(y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n)$$

where $\ell(\cdot)$ can be perceptron/hinge/logistic loss

- no closed-form in general (unlike linear regression)
- can apply general convex optimization methods

Note: minimizing perceptron loss *does not really make sense* (try w = 0), but the algorithm derived from this perspective does.

Outline

2 Logistic Regression

A simple view

In one sentence: find the minimizer of

$$F(\boldsymbol{w}) = \frac{1}{N} \sum_{n=1}^{N} \ell_{\text{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n)$$
$$= \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n})$$

A simple view

In one sentence: find the minimizer of

$$F(\boldsymbol{w}) = \frac{1}{N} \sum_{n=1}^{N} \ell_{\text{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n)$$
$$= \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n})$$

Before optimizing it: why logistic loss? and why "regression"?

Predicting probability

Instead of predicting a discrete label, can we *predict the probability of each label*? i.e. regress the probabilities

Predicting probability

Instead of predicting a discrete label, can we *predict the probability of each label*? i.e. regress the probabilities

One way: sigmoid function + linear model

$$\mathbb{P}(y = +1 \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x})$$

where σ is the sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Properties

Properties of sigmoid $\sigma(z) = \frac{1}{1+e^{-z}}$

• between 0 and 1 (good as probability)

Properties

Properties of sigmoid $\sigma(z) = \frac{1}{1+e^{-z}}$

- between 0 and 1 (good as probability)
- $\sigma(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \geq 0.5 \Leftrightarrow \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \geq 0$, consistent with predicting the label with sgn $(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x})$

Properties of sigmoid $\sigma(z) = \frac{1}{1+e^{-z}}$

- between 0 and 1 (good as probability)
- $\sigma(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \geq 0.5 \Leftrightarrow \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \geq 0$, consistent with predicting the label with sgn $(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x})$
- larger $w^{\mathrm{T}}x \Rightarrow$ larger $\sigma(w^{\mathrm{T}}x) \Rightarrow$ higher confidence in label 1

Properties of sigmoid $\sigma(z) = \frac{1}{1+e^{-z}}$

- between 0 and 1 (good as probability)
- $\sigma(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \geq 0.5 \Leftrightarrow \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \geq 0$, consistent with predicting the label with sgn $(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x})$
- larger $w^{\mathrm{T}}x \Rightarrow$ larger $\sigma(w^{\mathrm{T}}x) \Rightarrow$ higher confidence in label 1

•
$$\sigma(z) + \sigma(-z) = 1$$
 for all z

Properties of sigmoid $\sigma(z) = \frac{1}{1+e^{-z}}$

- between 0 and 1 (good as probability)
- $\sigma(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \geq 0.5 \Leftrightarrow \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \geq 0$, consistent with predicting the label with sgn $(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x})$
- larger $w^{\mathrm{T}}x \Rightarrow$ larger $\sigma(w^{\mathrm{T}}x) \Rightarrow$ higher confidence in label 1

•
$$\sigma(z) + \sigma(-z) = 1$$
 for all z

The probability of label -1 is naturally

$$1 - \mathbb{P}(y = +1 \mid \boldsymbol{x}; \boldsymbol{w}) = 1 - \sigma(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \sigma(-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x})$$

Properties of sigmoid $\sigma(z) = \frac{1}{1+e^{-z}}$

- between 0 and 1 (good as probability)
- $\sigma(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \geq 0.5 \Leftrightarrow \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \geq 0$, consistent with predicting the label with sgn $(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x})$
- larger $w^{\mathrm{T}}x \Rightarrow$ larger $\sigma(w^{\mathrm{T}}x) \Rightarrow$ higher confidence in label 1

•
$$\sigma(z) + \sigma(-z) = 1$$
 for all z

The probability of label -1 is naturally

$$1 - \mathbb{P}(y = +1 \mid \boldsymbol{x}; \boldsymbol{w}) = 1 - \sigma(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \sigma(-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x})$$

and thus

$$\mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \frac{1}{1 + e^{-y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}}$$

How to regress with discrete labels?

What we observe are labels, not probabilities.

How to regress with discrete labels?

What we observe are labels, not probabilities.

Take a probabilistic view

- ullet assume data is independently generated in this way by some w
- perform Maximum Likelihood Estimation (MLE)

How to regress with discrete labels?

What we observe are labels, not probabilities.

Take a probabilistic view

- ullet assume data is independently generated in this way by some w
- perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y_1, \dots, y_n given x_1, \dots, x_n , as a function of some w?

$$P(\boldsymbol{w}) = \prod_{n=1}^{N} \mathbb{P}(y_n \mid \boldsymbol{x_n}; \boldsymbol{w})$$

MLE: find w^* that maximizes the probability P(w)

$$\boldsymbol{w}^* = \operatorname*{argmax}_{\boldsymbol{w}} P(\boldsymbol{w}) = \operatorname*{argmax}_{\boldsymbol{w}} \prod_{n=1}^N \mathbb{P}(y_n \mid \boldsymbol{x_n}; \boldsymbol{w})$$

$$oldsymbol{w}^* = rgmax_{oldsymbol{w}} P(oldsymbol{w}) = rgmax_{oldsymbol{w}} \prod_{n=1}^N \mathbb{P}(y_n \mid oldsymbol{x_n}; oldsymbol{w})$$

= $rgmax_{oldsymbol{w}} \sum_{n=1}^N \ln \mathbb{P}(y_n \mid oldsymbol{x_n}; oldsymbol{w})$

$$\boldsymbol{w}^* = \underset{\boldsymbol{w}}{\operatorname{argmax}} P(\boldsymbol{w}) = \underset{\boldsymbol{w}}{\operatorname{argmax}} \prod_{n=1}^N \mathbb{P}(y_n \mid \boldsymbol{x_n}; \boldsymbol{w})$$
$$= \underset{\boldsymbol{w}}{\operatorname{argmax}} \sum_{n=1}^N \ln \mathbb{P}(y_n \mid \boldsymbol{x_n}; \boldsymbol{w}) = \underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{n=1}^N - \ln \mathbb{P}(y_n \mid \boldsymbol{x_n}; \boldsymbol{w})$$

$$\begin{split} \boldsymbol{w}^* &= \operatorname*{argmax}_{\boldsymbol{w}} P(\boldsymbol{w}) = \operatorname*{argmax}_{\boldsymbol{w}} \prod_{n=1}^N \mathbb{P}(y_n \mid \boldsymbol{x_n}; \boldsymbol{w}) \\ &= \operatorname*{argmax}_{\boldsymbol{w}} \sum_{n=1}^N \ln \mathbb{P}(y_n \mid \boldsymbol{x_n}; \boldsymbol{w}) = \operatorname*{argmin}_{\boldsymbol{w}} \sum_{n=1}^N - \ln \mathbb{P}(y_n \mid \boldsymbol{x_n}; \boldsymbol{w}) \\ &= \operatorname*{argmin}_{\boldsymbol{w}} \sum_{n=1}^N \ln(1 + e^{-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x_n}}) \end{split}$$

$$\boldsymbol{w}^{*} = \operatorname*{argmax}_{\boldsymbol{w}} P(\boldsymbol{w}) = \operatorname*{argmax}_{\boldsymbol{w}} \prod_{n=1}^{N} \mathbb{P}(y_{n} \mid \boldsymbol{x_{n}}; \boldsymbol{w})$$
$$= \operatorname*{argmax}_{\boldsymbol{w}} \sum_{n=1}^{N} \ln \mathbb{P}(y_{n} \mid \boldsymbol{x_{n}}; \boldsymbol{w}) = \operatorname*{argmin}_{\boldsymbol{w}} \sum_{n=1}^{N} - \ln \mathbb{P}(y_{n} \mid \boldsymbol{x_{n}}; \boldsymbol{w})$$
$$= \operatorname*{argmin}_{\boldsymbol{w}} \sum_{n=1}^{N} \ln(1 + e^{-y_{n}\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x_{n}}}) = \operatorname*{argmin}_{\boldsymbol{w}} \sum_{n=1}^{N} \ell_{\mathsf{logistic}}(y_{n}\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x_{n}})$$

$$\boldsymbol{w}^{*} = \operatorname*{argmax}_{\boldsymbol{w}} P(\boldsymbol{w}) = \operatorname*{argmax}_{\boldsymbol{w}} \prod_{n=1}^{N} \mathbb{P}(y_{n} \mid \boldsymbol{x_{n}}; \boldsymbol{w})$$
$$= \operatorname*{argmax}_{\boldsymbol{w}} \sum_{n=1}^{N} \ln \mathbb{P}(y_{n} \mid \boldsymbol{x_{n}}; \boldsymbol{w}) = \operatorname*{argmin}_{\boldsymbol{w}} \sum_{n=1}^{N} - \ln \mathbb{P}(y_{n} \mid \boldsymbol{x_{n}}; \boldsymbol{w})$$
$$= \operatorname*{argmin}_{\boldsymbol{w}} \sum_{n=1}^{N} \ln(1 + e^{-y_{n}\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x_{n}}}) = \operatorname*{argmin}_{\boldsymbol{w}} \sum_{n=1}^{N} \ell_{\mathsf{logistic}}(y_{n}\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x_{n}})$$
$$= \operatorname*{argmin}_{\boldsymbol{w}} F(\boldsymbol{w})$$

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \tilde{\nabla} F(\boldsymbol{w})$$

~

$$oldsymbol{w} \leftarrow oldsymbol{w} - \eta \nabla F(oldsymbol{w})$$

= $oldsymbol{w} - \eta \nabla_{oldsymbol{w}} \ell_{\text{logistic}}(y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n)$ ($n \in [N]$ is drawn u.a.r.)

Algorithms

$$\begin{split} \boldsymbol{w} &\leftarrow \boldsymbol{w} - \eta \tilde{\nabla} F(\boldsymbol{w}) \\ &= \boldsymbol{w} - \eta \nabla_{\boldsymbol{w}} \ell_{\text{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) \qquad (n \in [N] \text{ is drawn u.a.r.}) \\ &= \boldsymbol{w} - \eta \left(\frac{\partial \ell_{\text{logistic}}(z)}{\partial z} \Big|_{z=y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n} \right) y_n \boldsymbol{x}_n \end{split}$$

$$\begin{split} \boldsymbol{w} &\leftarrow \boldsymbol{w} - \eta \tilde{\nabla} F(\boldsymbol{w}) \\ &= \boldsymbol{w} - \eta \nabla_{\boldsymbol{w}} \ell_{\text{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) \qquad (n \in [N] \text{ is drawn u.a.r.}) \\ &= \boldsymbol{w} - \eta \left(\frac{\partial \ell_{\text{logistic}}(z)}{\partial z} \Big|_{z=y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n} \right) y_n \boldsymbol{x}_n \\ &= \boldsymbol{w} - \eta \left(\frac{-e^{-z}}{1+e^{-z}} \Big|_{z=y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n} \right) y_n \boldsymbol{x}_n \end{split}$$

$$\begin{split} \boldsymbol{w} &\leftarrow \boldsymbol{w} - \eta \tilde{\nabla} F(\boldsymbol{w}) \\ &= \boldsymbol{w} - \eta \nabla_{\boldsymbol{w}} \ell_{\text{logistic}}(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) \qquad (n \in [N] \text{ is drawn u.a.r.}) \\ &= \boldsymbol{w} - \eta \left(\frac{\partial \ell_{\text{logistic}}(z)}{\partial z} \Big|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) y_{n} \boldsymbol{x}_{n} \\ &= \boldsymbol{w} - \eta \left(\frac{-e^{-z}}{1+e^{-z}} \Big|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) y_{n} \boldsymbol{x}_{n} \\ &= \boldsymbol{w} + \eta \sigma (-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) y_{n} \boldsymbol{x}_{n} \end{split}$$

$$\begin{split} \boldsymbol{w} &\leftarrow \boldsymbol{w} - \eta \tilde{\nabla} F(\boldsymbol{w}) \\ &= \boldsymbol{w} - \eta \nabla_{\boldsymbol{w}} \ell_{\text{logistic}}(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) \qquad (n \in [N] \text{ is drawn u.a.r.}) \\ &= \boldsymbol{w} - \eta \left(\frac{\partial \ell_{\text{logistic}}(z)}{\partial z} \Big|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) y_{n} \boldsymbol{x}_{n} \\ &= \boldsymbol{w} - \eta \left(\frac{-e^{-z}}{1 + e^{-z}} \Big|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) y_{n} \boldsymbol{x}_{n} \\ &= \boldsymbol{w} + \eta \sigma (-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) y_{n} \boldsymbol{x}_{n} \\ &= \boldsymbol{w} + \eta \mathbb{P}(-y_{n} \mid \boldsymbol{x}_{n}; \boldsymbol{w}) y_{n} \boldsymbol{x}_{n} \end{split}$$

Algorithms

Let's apply SGD again

$$\begin{split} \boldsymbol{w} &\leftarrow \boldsymbol{w} - \eta \tilde{\nabla} F(\boldsymbol{w}) \\ &= \boldsymbol{w} - \eta \nabla_{\boldsymbol{w}} \ell_{\text{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) \qquad (n \in [N] \text{ is drawn u.a.r.}) \\ &= \boldsymbol{w} - \eta \left(\frac{\partial \ell_{\text{logistic}}(z)}{\partial z} \Big|_{z=y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n} \right) y_n \boldsymbol{x}_n \\ &= \boldsymbol{w} - \eta \left(\frac{-e^{-z}}{1+e^{-z}} \Big|_{z=y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n} \right) y_n \boldsymbol{x}_n \\ &= \boldsymbol{w} + \eta \sigma (-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) y_n \boldsymbol{x}_n \\ &= \boldsymbol{w} + \eta \mathbb{P}(-y_n \mid \boldsymbol{x}_n; \boldsymbol{w}) y_n \boldsymbol{x}_n \end{split}$$

This is a *soft version of Perceptron!*

$$\mathbb{P}(-y_n | \boldsymbol{x}_n; \boldsymbol{w})$$
 versus $\mathbb{I}[y_n \neq \mathsf{sgn}(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n)]$

$$\nabla_{\boldsymbol{w}} \ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) = -\sigma(-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) y_n \boldsymbol{x}_n$$

$$\nabla_{\boldsymbol{w}} \ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) = -\sigma(-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) y_n \boldsymbol{x}_n$$

$$\nabla^2_{\boldsymbol{w}} \ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) = \left(\frac{\partial \sigma(z)}{\partial z} \Big|_{z = -y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n} \right) y_n^2 \boldsymbol{x}_n \boldsymbol{x}_n^{\mathrm{T}}$$

$$abla_{\boldsymbol{w}}\ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) = -\sigma(-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n)y_n \boldsymbol{x}_n$$

$$\begin{aligned} \nabla_{\boldsymbol{w}}^{2} \ell_{\mathsf{logistic}}(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) &= \left(\frac{\partial \sigma(z)}{\partial z} \Big|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) y_{n}^{2} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\ &= \left(\frac{e^{-z}}{(1+e^{-z})^{2}} \Big|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \end{aligned}$$

$$\nabla_{\boldsymbol{w}} \ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) = -\sigma(-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) y_n \boldsymbol{x}_n$$

$$\begin{aligned} \nabla_{\boldsymbol{w}}^{2} \ell_{\mathsf{logistic}}(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) &= \left(\frac{\partial \sigma(z)}{\partial z} \Big|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) y_{n}^{2} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\ &= \left(\frac{e^{-z}}{(1+e^{-z})^{2}} \Big|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\ &= \sigma(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) \left(1 - \sigma(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) \right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \end{aligned}$$

$$\nabla_{\boldsymbol{w}} \ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) = -\sigma(-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) y_n \boldsymbol{x}_n$$

$$\begin{aligned} \nabla_{\boldsymbol{w}}^{2} \ell_{\mathsf{logistic}}(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) &= \left(\frac{\partial \sigma(z)}{\partial z} \Big|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) y_{n}^{2} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\ &= \left(\frac{e^{-z}}{(1+e^{-z})^{2}} \Big|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\ &= \sigma(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) \left(1 - \sigma(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) \right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \end{aligned}$$

Exercises:

• why is the Hessian of logistic loss positive semidefinite?

$$abla_{oldsymbol{w}}\ell_{\mathsf{logistic}}(y_noldsymbol{w}^{\mathrm{T}}oldsymbol{x}_n) = -\sigma(-y_noldsymbol{w}^{\mathrm{T}}oldsymbol{x}_n)y_noldsymbol{x}_n$$

$$\begin{aligned} \nabla_{\boldsymbol{w}}^{2} \ell_{\mathsf{logistic}}(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) &= \left(\frac{\partial \sigma(z)}{\partial z} \Big|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) y_{n}^{2} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\ &= \left(\frac{e^{-z}}{(1+e^{-z})^{2}} \Big|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\ &= \sigma(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) \left(1 - \sigma(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) \right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \end{aligned}$$

Exercises:

- why is the Hessian of logistic loss positive semidefinite?
- can we apply Newton method to perceptron/hinge loss?

Outline

2 Logistic Regression

Recall the perceptron loss

$$F(\boldsymbol{w}) = \frac{1}{N} \sum_{n=1}^{N} \ell_{\text{perceptron}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n)$$
$$= \frac{1}{N} \sum_{n=1}^{N} \max\{0, -y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n\}$$

Recall the perceptron loss

$$F(\boldsymbol{w}) = \frac{1}{N} \sum_{n=1}^{N} \ell_{\text{perceptron}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n)$$
$$= \frac{1}{N} \sum_{n=1}^{N} \max\{0, -y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n\}$$

Let's approximately minimize it with GD/SGD.

Objective

$$F(\boldsymbol{w}) = \frac{1}{N} \sum_{n=1}^{N} \max\{0, -y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n\}$$

Objective

$$F(\boldsymbol{w}) = \frac{1}{N} \sum_{n=1}^{N} \max\{0, -y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n\}$$

Gradient (or really *sub-gradient*) is

$$abla F(oldsymbol{w}) = rac{1}{N} \sum_{n=1}^{N} - \mathbb{I}[y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n \leq 0] y_n oldsymbol{x}_n$$

(only misclassified examples contribute to the gradient)

Objective

$$F(\boldsymbol{w}) = \frac{1}{N} \sum_{n=1}^{N} \max\{0, -y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n\}$$

Gradient (or really *sub-gradient*) is

$$abla F(oldsymbol{w}) = rac{1}{N} \sum_{n=1}^{N} - \mathbb{I}[y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n \leq 0] y_n oldsymbol{x}_n$$

(only misclassified examples contribute to the gradient)

GD update

$$oldsymbol{w} \leftarrow oldsymbol{w} + rac{\eta}{N} \sum_{n=1}^{N} \mathbb{I}[y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n \leq 0] y_n oldsymbol{x}_n$$

Objective

$$F(\boldsymbol{w}) = \frac{1}{N} \sum_{n=1}^{N} \max\{0, -y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n\}$$

Gradient (or really *sub-gradient*) is

$$abla F(oldsymbol{w}) = rac{1}{N} \sum_{n=1}^{N} - \mathbb{I}[y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n \leq 0] y_n oldsymbol{x}_n$$

(only misclassified examples contribute to the gradient)

GD update

$$oldsymbol{w} \leftarrow oldsymbol{w} + rac{\eta}{N} \sum_{n=1}^N \mathbb{I}[y_n oldsymbol{w}^{ ext{T}} oldsymbol{x}_n \leq 0] y_n oldsymbol{x}_n$$

Slow: each update makes one pass of the entire training set!

How to construct a stochastic gradient?

How to construct a stochastic gradient?

One common trick: pick one example $n \in [N]$ uniformly at random, let

$$ilde{
abla} F(oldsymbol{w}^{(t)}) = -\mathbb{I}[y_noldsymbol{w}^{\mathrm{T}}oldsymbol{x}_n \leq 0]y_noldsymbol{x}_n$$

clearly unbiased (convince yourself).

How to construct a stochastic gradient?

One common trick: pick one example $n \in [N]$ uniformly at random, let

$$ilde{
abla} F(oldsymbol{w}^{(t)}) = -\mathbb{I}[y_noldsymbol{w}^{\mathrm{T}}oldsymbol{x}_n \leq 0]y_noldsymbol{x}_n$$

clearly unbiased (convince yourself).

SGD update:

$$oldsymbol{w} \leftarrow oldsymbol{w} + \eta \mathbb{I}[y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n \leq 0] y_n oldsymbol{x}_n$$
Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example $n \in [N]$ uniformly at random, let

$$ilde{
abla} F(oldsymbol{w}^{(t)}) = -\mathbb{I}[y_noldsymbol{w}^{\mathrm{T}}oldsymbol{x}_n \leq 0]y_noldsymbol{x}_n$$

clearly unbiased (convince yourself).

SGD update:

$$oldsymbol{w} \leftarrow oldsymbol{w} + \eta \mathbb{I}[y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n \leq 0] y_n oldsymbol{x}_n$$

Fast: each update touches only one data point!

Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example $n \in [N]$ uniformly at random, let

$$ilde{
abla} F(oldsymbol{w}^{(t)}) = -\mathbb{I}[y_noldsymbol{w}^{\mathrm{T}}oldsymbol{x}_n \leq 0]y_noldsymbol{x}_n$$

clearly unbiased (convince yourself).

SGD update:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \eta \mathbb{I}[y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n \leq 0] y_n \boldsymbol{x}_n$$

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a *finite sum* (over each training point) and the above trick applies!

Perceptron algorithm is SGD with $\eta=1$ applied to perceptron loss:

Perceptron algorithm is SGD with $\eta=1$ applied to perceptron loss:

Repeat:

- Pick a data point $oldsymbol{x}_n$ uniformly at random
- If $\operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n) \neq y_n$

 $\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$

Perceptron algorithm is SGD with $\eta=1$ applied to perceptron loss:

Repeat:

- Pick a data point $oldsymbol{x}_n$ uniformly at random
- If $\operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n) \neq y_n$

 $\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$

Note:

• w is always a *linear combination* of the training examples

Perceptron algorithm is SGD with $\eta=1$ applied to perceptron loss:

Repeat:

- Pick a data point $oldsymbol{x}_n$ uniformly at random
- If $\operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n) \neq y_n$

 $\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$

Note:

- w is always a *linear combination* of the training examples
- why $\eta = 1$? Does not really matter in terms of prediction of $oldsymbol{w}$

Why does it make sense?

If the current weight \boldsymbol{w} makes a mistake

 $y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n < 0$

Why does it make sense?

If the current weight \boldsymbol{w} makes a mistake

$$y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n < 0$$

then after the update $oldsymbol{w}' = oldsymbol{w} + y_n oldsymbol{x}_n$ we have

$$y_n {\boldsymbol{w}'}^{\mathrm{T}} {\boldsymbol{x}}_n = y_n {\boldsymbol{w}}^{\mathrm{T}} {\boldsymbol{x}}_n + y_n^2 {\boldsymbol{x}}_n^{\mathrm{T}} {\boldsymbol{x}}_n \ge y_n {\boldsymbol{w}}^{\mathrm{T}} {\boldsymbol{x}}_n$$

Why does it make sense?

If the current weight \boldsymbol{w} makes a mistake

$$y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n < 0$$

then after the update $oldsymbol{w}' = oldsymbol{w} + y_n oldsymbol{x}_n$ we have

$$y_n {\boldsymbol{w}'}^{\mathrm{T}} {\boldsymbol{x}}_n = y_n {\boldsymbol{w}}^{\mathrm{T}} {\boldsymbol{x}}_n + y_n^2 {\boldsymbol{x}}_n^{\mathrm{T}} {\boldsymbol{x}}_n \ge y_n {\boldsymbol{w}}^{\mathrm{T}} {\boldsymbol{x}}_n$$

Thus it is more likely to get it right after the update.

Any theory?

(HW 1) If training set is linearly separable

- Perceptron *converges in a finite number of steps*
- training error is 0

Any theory?

(HW 1) If training set is linearly separable

- Perceptron *converges in a finite number of steps*
- training error is 0

There are also guarantees when the data are not linearly separable.