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Linear Classifiers and Surrogate Losses

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

This lecture: binary classification
@ Number of classes: C =2

@ Labels: {—1,+1} (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:
@ require carrying the training set

@ more like a heuristic
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Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let's follow the recipe:

Step 1. Pick a set of models F.
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Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let's follow the recipe:
Step 1. Pick a set of models F.

Again try linear models, but how to predict a label using wTx?

Sign of wTx predicts the label:

. T +1 ifwTz >0
SEN(WT) =9 if 4T < 0

(Sometimes use sgn for sign too.)
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Linear Classifiers and Surrogate Losses

The models

The set of (separating) hyperplanes:

F={f(x) = sgn('wTw) |w e RD}
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The set of (separating) hyperplanes:

F={f(x) = sgn('wTw) |w e RD}

Good choice for linearly separable data, i.e., Jw s.t.
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The models

The set of (separating) hyperplanes:

F={f(x) = sgn('wTw) |w e RD}

Good choice for linearly separable data, i.e., Jw s.t.

sgn(men) =y, Of Ypw xp>0

for all n € [N].
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Linear Classifiers and Surrogate Losses

The models

Still makes sense for “almost” linearly separable data
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Linear Classifiers and Surrogate Losses

The models

For clearly not linearly separable data,
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Linear Classifiers and Surrogate Losses

The models

For clearly not linearly separable data,
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Again can apply a nonlinear mapping ®:
F={f(x) = sgn(w" ®(x)) | w € RM}

More discussions in the next two lectures.
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0-1 Loss

Step 2. Define error/loss L(y',y).
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0-1 Loss

Step 2. Define error/loss L(y',y).
Most natural one for classification: 0-1 loss L(y/,y) = Iy’ # y]

For classification, more convenient to look at the loss as a function of
ywTx. That is, with

Eo_l(z) = ]I[Z S 0]

L L L L
2 1 0 1 2

the loss for hyperplane w on example (x,y) is £o.1 (yw ' )
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Linear Classifiers and Surrogate Losses

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

LS
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Linear Classifiers and Surrogate Losses

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.
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Even worse, minimizing 0-1 loss is NP-hard in general.
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Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss
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@ perceptron 10ss fperceptron(2) = max{0, —z} (used in Perceptron)
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Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

LS

° lperceptron(2) = max{0, —z} (used in Perceptron)
o hinge l0ss lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss liogistic(2) = log(1 + exp(—=z)) (used in logistic regression;
the base of log doesn't matter)
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Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

N N
w* = argmin E L(ypw a:n) = argmln— E L(ypw ar;n)
weRP w€RDP

where £(-) can be perceptron/hinge/logistic loss
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Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:
N N
w* = argmmZE YnW a:n) = argmln— ZE YnW ar;n)
weRP weRP
where £(-) can be perceptron/hinge/logistic loss
@ no closed-form in general (unlike linear regression)
@ can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w = 0),
but the algorithm derived from this perspective does.
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© Logistic Regression
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Logistic Regression

A simple view

In one sentence: find the minimizer of

1
F(w) == N Zelogistic(yanmn)

n=1

1 _
NZ n(l 4 e vt
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Logistic Regression

A simple view

In one sentence: find the minimizer of

1
F(w) == N Zelogistic(yanmn)

n=1

1 _
NZ n(l 4 e vt

Before optimizing it: why logistic loss? and why “regression”?

13 /26



R T
Predicting probability

Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities
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A probabilsic view
Predicting probability

Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities

One way: sigmoid function 4 linear model
Ply =41 | z;w) = o(w"x)

where o is the sigmoid function:
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A probabilistic view
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability)
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R T
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability)

o o(wTz) > 0.5 < wlx >0, consistent
with predicting the label with sgn(wTx)

o larger whx = larger o(w?’

confidence in label 1

x) = higher

@ 0(z)+o(—2z)=1forall z
The probability of label —1 is naturally
1-Ply=+1|z;w)=1-o(w'e) =o(—w'x)
and thus

1
. — Tr) = ___
Ply | @iw) = ofyw’e) = —— o
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Logistic Regression A probabilistic view

How to regress with discrete labels?

What we observe are labels, not probabilities.
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Logistic Regression A probabilistic view

How to regress with discrete labels?

What we observe are labels, not probabilities.
Take a probabilistic view
@ assume data is independently generated in this way by some w

e perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y1,- -+ , v, given
T1,-++ ,Zp, as a function of some w?

N
P(w) = H P(yn | n; w)

MLE: find w* that maximizes the probability P(w)
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A probabilistic view
The MLE solution

N
w* = argmax P(w) = argmax H P(yn | n;w)
w

w n=1
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A probabilistic view
The MLE solution

N
w”* = argmax P(w) = argmax H P(yn | n;w)
w

w n=1

N N
= argmaxz InP(yy, | n;w) = argminz —InP(y, | n; w)
w n=1 w n=1

N N
= argmin Z In(1+ e_y”me") = argmin Z €|ogistic(yn'men)
w n=1 w n=1

= argmin F'(w)
w

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!
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e
Let's apply SGD again

w — w — nVF(w)
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e
Let's apply SGD again

w — w — nVF(w)

=w— nvwglogistic(yanxn) (n S [N] is drawn u.a.r.)
8elogistic(z)
= w — _ - €T
77< 0z z=ynwTae, Ynin
= w — x
" <1 +e % z:yanwn> Ynin
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e
Let's apply SGD again

w — w — nVF(w)

=w— nvwglogistic(yanxn) (n S [N] is drawn u.a.r.)
8elogistic(z)
=w n < az z:yanmn Ynn
= w — n <1+€ Z |, yanacn> YnTn

Ynw xn)ynwn

(—
=w+ UP( Yn | Tp; W )ynmn
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e
Let's apply SGD again

w +— w —nVF(w)
=w — ﬁvwglogistic(yanxn)

—w-n <3€|ogais;ic(z)

=w — xr
n<1+e Zlz= yanﬂcn> Ynin

Ynw Ty ) yn s,

(—
= w + NP(—yn | Tn; W)Yy

This is a soft version of Perceptron!

P(—yn|®n; w)  versus ]I[yn%sgn(chcn)]

T >yn93n
z=ynwTa,

(n € [N] is drawn u.a.r.)
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e
Applying Newton to logistic loss

vwflogistic(yn'wTZBn) = *U(*yanwn)ynmn
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Applying Newton to logistic loss
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0o (z)
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Vi;glogistic (yanmn) = (

2 T
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z=—ynwTax,

19 /26



e
Applying Newton to logistic loss

vwflogistic(yn'men) = *U(*yn'men)ynmn

0o (z)

Vi;glogistic (yanmn) = (

2 T
> ynm’nmn

z=—ynwTax,

o
z=—ynwTaxy,
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e
Applying Newton to logistic loss

vwflogistic(yn'men) = *U(*yanmn)ynmn

V 2 T
EIOgIStIC ynw mn = ( >ynmnmn
T
z=—ynwTay,
T

= L
1—|—€ Z z=—ynwTla, nen
Y
T

= o(ypw :cn) (1 — J(yana:n)) Tnx,

19 /26



e
Applying Newton to logistic loss

vwflogistic(yn'men) = *U(*yanmn)ynmn
T

= Ty
( 1 + e Z Z=’yanwn> e
T

= o(ynw Ccn) (1 - U(yanmn)) Lndy

V2 Eloglstlc(ynw mn >y721mnmg

z—fyanwn

Exercises:

@ why is the Hessian of logistic loss positive semidefinite?
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e
Applying Newton to logistic loss

vwflogistic(yn'men) = *U(*yanmn)ynmn
T

= Ty
( 1 + e Z Z=’yanwn> e
T

= o(ynw xn) (1 - U(yanmn)) Lndy

V2 Eloglstlc(ynw mn >y721mnmg

z—fyanzn

Exercises:
@ why is the Hessian of logistic loss positive semidefinite?

@ can we apply Newton method to perceptron/hinge loss?
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Outline

© Perceptron
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Recall the perceptron loss

Z\H

max{0, —y,w'xz,}

Z\H

N

T
E perceptron ynw mn)
N
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Recall the perceptron loss

Z\H

max{0, —y,w mn}

Z\H

N

T
Z perceptron ynw mn)
N

Let’s approximately minimize it with GD/SGD.
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Applying GD to perceptron loss

Objective

N
1
F(w) = ¥ Z max{0, —y,w xz,}
n=1
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Applying GD to perceptron loss

Objective
| X
F(w) = ¥ Z_: max{0, —y,w xz,}
Gradient (or really sub-gradient) is

| N
Z =1 ynw z, < 0lypxn,
n:l

(only misclassified examples contribute to the gradient)
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Applying GD to perceptron loss

Objective

N
1
F(w) = ¥ Z max{0, —y,w xz,}

Gradient (or really sub-gradient) is

| X
Z =1 ynw z, < 0lypxn,

n:l
(only misclassified examples contribute to the gradient)
GD update

N
w < w+ Z yn'w x, < O]yna:n

L
N

Slow: each update makes one pass of the entire training set!
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Applying SGD to perceptron loss

How to construct a stochastic gradient?
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Applying SGD to perceptron loss

How to construct a stochastic gradient?
One common trick: pick one example n € [N] uniformly at random, let
VE(w®) = ~Iy,w z, < 0)ynz,

clearly unbiased (convince yourself).
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Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n € [N] uniformly at random, let
@F(w(t)) = —]I[yana:n < Olynxy

clearly unbiased (convince yourself).

SGD update:
w < w + nl[yanmn < O]yn$n

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!
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The Perceptron Algorithm

Perceptron algorithm is SGD with n = 1 applied to perceptron loss:
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Repeat:
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o If sgn(w"x,) # yn
W <— W+ YTy
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o If sgn(w"x,) # yn
W <— W+ YTy

Note:
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The Perceptron Algorithm

Perceptron algorithm is SGD with n = 1 applied to perceptron loss:

Repeat:

@ Pick a data point x,, uniformly at random

o If sgn(w"x,) # yn
W <— W+ YTy

Note:
@ w is always a linear combination of the training examples

@ why n =17 Does not really matter in terms of prediction of w
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Why does it make sense?

If the current weight w makes a mistake

yana:n <0
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Why does it make sense?

If the current weight w makes a mistake
yana:n <0
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Why does it make sense?

If the current weight w makes a mistake
yana:n <0
then after the update w’ = w + y,x, we have
T
ynw' T, = yan:cn + yixzxn > yanasn

Thus it is more likely to get it right after the update.
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Any theory?

(HW 1) If training set is linearly separable

@ Perceptron converges in a finite number
of steps

@ training error is 0
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Any theory?

(HW 1) If training set is linearly separable

@ Perceptron converges in a finite number
of steps

@ training error is 0

There are also guarantees when the data are not linearly separable.
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