CSCI567 Machine Learning (Fall 2024) J

Prof. Dani Yogatama
University of Southern California

September 13, 2024

1/26

Linear Classifiers and Surrogate Losses
Outline

@ Linear Classifiers and Surrogate Losses

2/ 26

Linear Classifiers and Surrogate Losses

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

3/26

Linear Classifiers and Surrogate Losses

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

This lecture: binary classification
@ Number of classes: C =2

@ Labels: {—1,+1} (cat or dog, fraud or not, price up or down...)

3/26

Linear Classifiers and Surrogate Losses

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

This lecture: binary classification
@ Number of classes: C =2

@ Labels: {—1,+1} (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:
@ require carrying the training set

@ more like a heuristic

3/26

Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let's follow the recipe:

Step 1. Pick a set of models F.

4 /26

Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let's follow the recipe:
Step 1. Pick a set of models F.

Again try linear models, but how to predict a label using wTx?

4 /26

Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let's follow the recipe:
Step 1. Pick a set of models F.

Again try linear models, but how to predict a label using wTx?

4 /26

Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let's follow the recipe:
Step 1. Pick a set of models F.

Again try linear models, but how to predict a label using wTx?

Sign of wTx predicts the label:

. T +1 ifwTz >0
SEN(WT) =9 if 4T < 0

(Sometimes use sgn for sign too.)

4 /26

Linear Classifiers and Surrogate Losses

The models

The set of (separating) hyperplanes:

F={f(x) = sgn('wTw) |w e RD}

5/ 26

Linear Classifiers and Surrogate Losses

The models

The set of (separating) hyperplanes:

F={f(x) = sgn('wTw) |w e RD}

Good choice for linearly separable data, i.e., Jw s.t.

sgn (,men) = Yn

for all n € [N].

5/ 26

Linear Classifiers and Surrogate Losses

The models

The set of (separating) hyperplanes:

F={f(x) = sgn('wTw) |w e RD}

Good choice for linearly separable data, i.e., Jw s.t.

sgn(men) =y, Of Ypw xp>0

for all n € [N].

5/ 26

Linear Classifiers and Surrogate Losses

The models

Still makes sense for “almost” linearly separable data

6/ 26

Linear Classifiers and Surrogate Losses

The models

For clearly not linearly separable data,

X R S ey £ 20 .
P R .
3. PRy + *% 13| .
¥ e 4 st . .
\ LAV w,:.?.ff i .
i w0 . .
EAES DL RGN :
+
g T T e ey os| 8 ° "
o
+ L] " ss
ettt "J};*un & ool e e . . .
Pl e . .
oD O IV B
PO < N PR A . .
o e B .
;&,{o, g TR -10 .
05| Rt 2% T . .
15 . .
! 05 o 05 1 15 205 15 10 0.5 00 05 10 15 20

7/ 26

Linear Classifiers and Surrogate Losses

The models

For clearly not linearly separable data,

R S ey LA 20
1 e ey
wp e e e W
B et RV g 1>
ot b BB Y
T s
+ Fel
B S RN I,)
NN .
. Ty o 4, oy . .
sy " + ' LA
ey daretd W & o0 ! s
+ +
o ORI A o N -
IO A0 D A _—
N N
Flapdted VLR 10|
08 FES AN Ly L g
15,
" E
05 o 05 1 15 20 15 10 05 00 05 10 15 20

Again can apply a nonlinear mapping ®:
F={f(x) = sgn(w" ®(x)) | w € RM}

More discussions in the next two lectures.

7/ 26

0-1 Loss

Step 2. Define error/loss L(y',y).

8 /26

0-1 Loss

Step 2. Define error/loss L(y',y).

Most natural one for classification: 0-1 loss L(y/,y) = Iy’ # y]

8 /26

0-1 Loss

Step 2. Define error/loss L(y',y).
Most natural one for classification: 0-1 loss L(y/,y) = Iy’ # y]

For classification, more convenient to look at the loss as a function of
ywTx. That is, with

Eo_l(z) =]I[Z S 0]

L L L L
2 1 0 1 2

the loss for hyperplane w on example (x,y) is £o.1 (yw ')

8 /26

Linear Classifiers and Surrogate Losses

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

LS

9/ 26

Linear Classifiers and Surrogate Losses

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

=]
i
-
=)

Even worse, minimizing 0-1 loss is NP-hard in general.

9/ 26

Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

2.0

L5

=]
o
-
&)

10 / 26

Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

2.0

15

=)
i
-
=]

@ perceptron 10ss fperceptron(2) = max{0, —z} (used in Perceptron)

10 / 26

Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

=]
—
-
%)

@ perceptron 10ss fperceptron(2) = max{0, —z} (used in Perceptron)

o hinge l0ss lhinge(2) = max{0,1 — z}(used in SVM and many others)

10 / 26

Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

LS

° lperceptron(2) = max{0, —z} (used in Perceptron)
o hinge l0ss lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss liogistic(2) = log(1 + exp(—=z)) (used in logistic regression;
the base of log doesn't matter)

10 / 26

Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

N N
w* = argmin E L(ypw a:n) = argmln— E L(ypw ar;n)
weRP w€RDP

where £(-) can be perceptron/hinge/logistic loss

11/ 26

Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

N N
w* = argmin E L(ypw a:n) = argmln— E L(ypw ar;n)
weRP w€RDP

where £(-) can be perceptron/hinge/logistic loss

@ no closed-form in general (unlike linear regression)

11/ 26

Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

N N
w* = argmmZE Ypwlx,) = argmln— ZE Ypw)
weRP weRP

where £(-) can be perceptron/hinge/logistic loss
@ no closed-form in general (unlike linear regression)

@ can apply general convex optimization methods

11/ 26

Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:
N N
w* = argmmZE Ypwlx,) = argmln— ZE Ypw)
weRP weRD
where £(-) can be perceptron/hinge/logistic loss

@ no closed-form in general (unlike linear regression)

@ can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense

11/ 26

Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:
N N
w* = argmmZE YnW a:n) = argmln— ZE YnW ar;n)
weRP weRP
where £(-) can be perceptron/hinge/logistic loss
@ no closed-form in general (unlike linear regression)
@ can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w = 0),
but the algorithm derived from this perspective does.

11/ 26

Outline

© Logistic Regression

12 /26

Logistic Regression

A simple view

In one sentence: find the minimizer of

1
F(w) == N Zelogistic(yanmn)

n=1

1 _
NZ n(l 4 e vt

13 /26

Logistic Regression

A simple view

In one sentence: find the minimizer of

1
F(w) == N Zelogistic(yanmn)

n=1

1 _
NZ n(l 4 e vt

Before optimizing it: why logistic loss? and why “regression”?

13 /26

R T
Predicting probability

Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities

14 / 26

A probabilsic view
Predicting probability

Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities

One way: sigmoid function 4 linear model
Ply =41 | z;w) = o(w"x)

where o is the sigmoid function:

09|
0.8

0.7]

1 0.6|
3, . 0.5
0.4
03]
02|
0.1

14 / 26

A probabilistic view
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability)

15 / 26

R T
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability)

o o(wTz) > 0.5 < wlx >0, consistent
with predicting the label with sgn(wTx)

15 / 26

R T
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability)

o o(wTz) > 0.5 < wlx >0, consistent
with predicting the label with sgn(wTx)

o larger whx = larger o(w?’

confidence in label 1

x) = higher

15 / 26

R T
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability)

o o(wTz) > 0.5 < wlx >0, consistent
with predicting the label with sgn(wTx)

o larger whx = larger o(w?’

confidence in label 1

x) = higher

@ 0(z)+o(—z)=1forall z

15 / 26

R T
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability)

o o(wTz) > 0.5 < wlx >0, consistent
with predicting the label with sgn(wTx)

o larger whx = larger o(w?’

confidence in label 1

x) = higher

@ 0(z)+o(—2z)=1forall z
The probability of label —1 is naturally
1-Ply=+1|z;w)=1-o(w'e) =o(—w'x)

15 / 26

R T
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability)

o o(wTz) > 0.5 < wlx >0, consistent
with predicting the label with sgn(wTx)

o larger whx = larger o(w?’

confidence in label 1

x) = higher

@ 0(z)+o(—2z)=1forall z
The probability of label —1 is naturally
1-Ply=+1|z;w)=1-o(w'e) =o(—w'x)
and thus

1
. — Tr) = ___
Ply | @iw) = ofyw’e) = —— o

15 / 26

Logistic Regression A probabilistic view

How to regress with discrete labels?

What we observe are labels, not probabilities.

16 / 26

Logistic Regression A probabilistic view

How to regress with discrete labels?

What we observe are labels, not probabilities.
Take a probabilistic view
@ assume data is independently generated in this way by some w

e perform Maximum Likelihood Estimation (MLE)

16 / 26

Logistic Regression A probabilistic view

How to regress with discrete labels?

What we observe are labels, not probabilities.
Take a probabilistic view
@ assume data is independently generated in this way by some w

e perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y1,- -+ , v, given
T1,-++ ,Zp, as a function of some w?

N
P(w) = H P(yn | n; w)

MLE: find w* that maximizes the probability P(w)

16 / 26

A probabilistic view
The MLE solution

N
w* = argmax P(w) = argmax H P(yn | n;w)
w

w n=1

17 / 26

A probabilistic view
The MLE solution

N
w* = argmax P(w) = argmax H P(yn | n;w)
w

w n=1

N
= argmaxz InP(yy, | Tn;w)
w n=1

17 / 26

A probabilistic view
The MLE solution

N
w* = argmax P(w) = argmax H P(yn | n;w)
w

w n=1

N N
= argmaxz InP(yy, | n;w) = argminz —InP(y, | n; w)
w n=1 w n=1

17 / 26

A probabilistic view
The MLE solution

N
w* = argmax P(w) = argmax H P(yn | n;w)
w

w n=1

N N
= argmaxz InP(yy, | n;w) = argminz —InP(y, | n; w)
w n=1 w n=1

N
= argmin Z In(1+ e_y"me")

w n=1

17 / 26

A probabilistic view
The MLE solution

N
w* = argmax P(w) = argmax H P(yn | n;w)
w

w n=1

N N
= argmaxz InP(yy, | n;w) = argminz —InP(y, | n; w)
w n=1 w n=1

N N
= argmin Z In(1+ e_y"me") = argmin Z €|0gistic(yn'wTa}n)

w n=1 w n=1

17 / 26

A probabilistic view
The MLE solution

N
w”* = argmax P(w) = argmax H P(yn | n;w)
w

w n=1

N N
= argmaxz InP(yy, | n;w) = argminz —InP(y, | n; w)
w n=1 w n=1

N N
= argmin Z In(1+ e_y”me") = argmin Z €|ogistic(yn'men)
w n=1 w n=1

= argmin F'(w)
w

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!

17 / 26

e
Let's apply SGD again

w — w — nVF(w)

18 / 26

e
Let's apply SGD again

w — w — nVF(w)

=w— 77vw£Iogistic(y'n,'wTw'n,) (n S [N] is drawn u.a.r.)

18 / 26

e
Let's apply SGD again

w — w — nVF(w)

=w— 77vw£Iogistic(y'n,'wTwn) (n S [N] is drawn u.a.r.)
_ 8elogistic(z)
=w 77 < az Z:yanmn ynxn

18 / 26

e
Let's apply SGD again

w — w — nVF(w)

=w— 77vw£Iogistic(y'n,'wTwn) (n S [N] is drawn u.a.r.)
8elogistic(z)
= w — _ - €T
77< 0z z=ynwTae, Ynin
= w — x
" <1 +e % z:yanwn> Ynin

18 / 26

e
Let's apply SGD again

w — w — nVF(w)

=w— nvwglogistic(yanxn) (n S [N] is drawn u.a.r.)
8elogistic(z)
= w — _ - €T
77< 0z z=ynwTae, Ynin
= w — x
" <1 +e % z:yanwn> Ynin

w + na(—yanmn)ynwn

18 / 26

e
Let's apply SGD again

w — w — nVF(w)

=w— nvwglogistic(yanxn) (n S [N] is drawn u.a.r.)
8elogistic(z)
=w n < az z:yanmn Ynn
= w — n <1+€ Z |, yanacn> YnTn

Ynw xn)ynwn

(—
=w+ UP(Yn | Tp; W)ynmn

18 / 26

e
Let's apply SGD again

w +— w —nVF(w)
=w — ﬁvwglogistic(yanxn)

—w-n <3€|ogais;ic(z)

=w — xr
n<1+e Zlz= yanﬂcn> Ynin

Ynw Ty) yn s,

(—
= w + NP(—yn | Tn; W)Yy

This is a soft version of Perceptron!

P(—yn|®n; w) versus]I[yn%sgn(chcn)]

T >yn93n
z=ynwTa,

(n € [N] is drawn u.a.r.)

18 / 26

e
Applying Newton to logistic loss

vwflogistic(yn'wTZBn) = *U(*yanwn)ynmn

19 /26

e
Applying Newton to logistic loss

vwflogistic(yn'men) = *U(*yn'men)ynmn

0o (z)
0z

Vi;glogistic (yanmn) = (

2 T
> ynm’nmn

z=—ynwTax,

19 /26

e
Applying Newton to logistic loss

vwflogistic(yn'men) = *U(*yn'men)ynmn

0o (z)

Vi;glogistic (yanmn) = (

2 T
> ynm’nmn

z=—ynwTax,

o
z=—ynwTaxy,

19 /26

e
Applying Newton to logistic loss

vwflogistic(yn'men) = *U(*yanmn)ynmn

V 2 T
EIOgIStIC ynw mn = (>ynmnmn
T
z=—ynwTay,
T

= L
1—|—€ Z z=—ynwTla, nen
Y
T

= o(ypw :cn) (1 — J(yana:n)) Tnx,

19 /26

e
Applying Newton to logistic loss

vwflogistic(yn'men) = *U(*yanmn)ynmn
T

= Ty
(1 + e Z Z=’yanwn> e
T

= o(ynw Ccn) (1 - U(yanmn)) Lndy

V2 Eloglstlc(ynw mn >y721mnmg

z—fyanwn

Exercises:

@ why is the Hessian of logistic loss positive semidefinite?

19 /26

e
Applying Newton to logistic loss

vwflogistic(yn'men) = *U(*yanmn)ynmn
T

= Ty
(1 + e Z Z=’yanwn> e
T

= o(ynw xn) (1 - U(yanmn)) Lndy

V2 Eloglstlc(ynw mn >y721mnmg

z—fyanzn

Exercises:
@ why is the Hessian of logistic loss positive semidefinite?

@ can we apply Newton method to perceptron/hinge loss?

19 /26

Outline

© Perceptron

20 / 26

Recall the perceptron loss

Z\H

max{0, —y,w'xz,}

Z\H

N

T
E perceptron ynw mn)
N

21/ 26

Recall the perceptron loss

Z\H

max{0, —y,w mn}

Z\H

N

T
Z perceptron ynw mn)
N

Let’s approximately minimize it with GD/SGD.

21/ 26

Applying GD to perceptron loss

Objective

N
1
F(w) = ¥ Z max{0, —y,w xz,}
n=1

22 / 26

Applying GD to perceptron loss

Objective
| X
F(w) = ¥ Z_: max{0, —y,w xz,}
Gradient (or really sub-gradient) is

| N
Z =1 ynw z, < 0lypxn,
n:l

(only misclassified examples contribute to the gradient)

22 / 26

Applying GD to perceptron loss

Objective

N
1
F(w) = ¥ Z max{0, —y,w xz,}

Gradient (or really sub-gradient) is

| X
Z =1 ynw z, < 0lypxn,

n:l
(only misclassified examples contribute to the gradient)

GD update

N
w<—w—|—;\7]z:1]lynw z, < 0lynxy,
n=

22 / 26

Applying GD to perceptron loss

Objective

N
1
F(w) = ¥ Z max{0, —y,w xz,}

Gradient (or really sub-gradient) is

| X
Z =1 ynw z, < 0lypxn,

n:l
(only misclassified examples contribute to the gradient)
GD update

N
w < w+ Z yn'w x, < O]yna:n

L
N

Slow: each update makes one pass of the entire training set!
22 / 26

Applying SGD to perceptron loss

How to construct a stochastic gradient?

23 / 26

Applying SGD to perceptron loss

How to construct a stochastic gradient?
One common trick: pick one example n € [N] uniformly at random, let
VE(w®) = ~Iy,w z, < 0)ynz,

clearly unbiased (convince yourself).

23 / 26

Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n € [N] uniformly at random, let
@F(w(t)) = —]I[yana:n < Olynxy

clearly unbiased (convince yourself).

SGD update:
w < w + nl[yanmn < O]yn$n

23 / 26

Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n € [N] uniformly at random, let
@F(w(t)) = —]I[yana:n < Olynxy

clearly unbiased (convince yourself).

SGD update:
w < w + nl[yanmn < O]yn$n

Fast: each update touches only one data point!

23 / 26

Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n € [N] uniformly at random, let
@F(w(t)) = —]I[yana:n < Olynxy

clearly unbiased (convince yourself).

SGD update:
w < w + nl[yanmn < O]yn$n

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!

23 / 26

The Perceptron Algorithm

Perceptron algorithm is SGD with n = 1 applied to perceptron loss:

24 / 26

The Perceptron Algorithm

Perceptron algorithm is SGD with n = 1 applied to perceptron loss:

Repeat:

@ Pick a data point x,, uniformly at random

o If sgn(w"x,) # yn
W <— W+ YTy

24 / 26

The Perceptron Algorithm

Perceptron algorithm is SGD with n = 1 applied to perceptron loss:

Repeat:

@ Pick a data point x,, uniformly at random

o If sgn(w"x,) # yn
W <— W+ YTy

Note:

@ w is always a linear combination of the training examples

24 / 26

The Perceptron Algorithm

Perceptron algorithm is SGD with n = 1 applied to perceptron loss:

Repeat:

@ Pick a data point x,, uniformly at random

o If sgn(w"x,) # yn
W <— W+ YTy

Note:
@ w is always a linear combination of the training examples

@ why n =17 Does not really matter in terms of prediction of w

24 / 26

Why does it make sense?

If the current weight w makes a mistake

yana:n <0

25 / 26

Why does it make sense?

If the current weight w makes a mistake
yana:n <0

then after the update w’ = w + y,x, we have

T T
ynw' T, = yanwn + yixzxn > YW Ty,

25 / 26

Why does it make sense?

If the current weight w makes a mistake
yana:n <0
then after the update w’ = w + y,x, we have
T
ynw' T, = yan:cn + yixzxn > yanasn

Thus it is more likely to get it right after the update.

25 / 26

Any theory?

(HW 1) If training set is linearly separable

@ Perceptron converges in a finite number
of steps

@ training error is 0

26 / 26

Any theory?

(HW 1) If training set is linearly separable

@ Perceptron converges in a finite number
of steps

@ training error is 0

There are also guarantees when the data are not linearly separable.

26 / 26

