CSCI567 Machine Learning (Fall 2024)

Prof. Dani Yogatama

University of Southern California

September 6, 2024

Outline

1 Linear regression

Linear regression with nonlinear basis

Overfitting and preventing overfitting

A Detour of Numerical Optimization Methods

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house

• ...

Key difference from classification

- continuous vs discrete
- measure *prediction errors* differently.
- lead to quite different learning algorithms.

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house

• ...

Key difference from classification

- continuous vs discrete
- measure *prediction errors* differently.
- lead to quite different learning algorithms.

Linear Regression: regression with linear models

Ex: Predicting the sale price of a house

Retrieve historical sales records (training data)

Features used to predict

Property Details for 3620 South BUDLONG, Los Angeles, CA 90007

Details provided by i-Tech MLS and may not match the public record. Learn More

Kitchen Information	Laundry Information	Heating & Cooling
 Remodeled 	 Inside Laundry 	 Well Cooling Unitial
Oven, Range		- management
Multi-Unit Information		
Community Features	Linit 2 Information	 Monthly Rent: \$2,350
 Units in Complex (Total): 5 	 # of Barts: 3 	Unit 5 Information
Multi-Family Information	 # of Beths: 1 	 # of Beds: 3
 # Leased: 5 	 Unfumished 	 # of Baths: 2
 # of Buildings: 1 	 Monthly Bent: \$2,250 	 Unturnished
Owner Pays Water		 Monthly Plant: \$2,325
Tenant Pays Bectricity, Tenant Pays Gas	Unit 3 Information	
Linit 1 Information	 Unfumished 	Unit 6 Information
 If of Beds: 2 	Unit 4 Information	# of Bether 1
 # of Baths; 1 	 # of Beds: 3 	
Infumished	 # of Baths: 1 	 Monthly Rent: \$2,250
Monthly Bent: \$1.700	 Unfumished 	
Property / Lot Details		
Property Features	Automatic Gate, Lawn, Sidewalks	Tax Parcel Number: 5040017019
 Automatic Gate, Card/Code Access 	 Corner Lot, Near Public Transit 	
Lot Information	Property Information	
 Lot Size (Sq. Ft.): 9,649 	 Updated/Remodeled 	
 Lot Size (Acres): 0.2215 	 Square Footage Source: Public Records 	
 Lot Size Source: Public Records 	· · · · · · · · · · · · · · · · · · ·	
Parking / Garage, Exterior Features, Utilities &	Financing	
Parking Information	Utility Information	Financial Information
 # of Parking Spaces (Total): 12 	 Green Certification Rating: 0.00 	 Capitalization Rate (%): 6.25
 Parking Space 	 Green Location: Transportation, Walkability 	 Actual Annual Gross Rent: \$128,331
Gated	Gneen Walk Score: 0	 Gross Rent Multiplier: 11.29
Building Information	 Green Year Certified: 0 	
Total Floors: 2		
Location Details, Misc. Information & Listing In	formation	
Location Information	Expense Information	Listing Information
 Cases Streets: W 36th PI 	 Operating: \$37,664 	 Listing Terms: Cash, Cash To Existing L

Correlation between square footage and sale price

Possibly linear relationship

Sale price \approx price_per_sqft \times square_footage + fixed_expense

Possibly linear relationship

How to measure error for one prediction?

• The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error,

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - *absolute* error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

• test set, ideal but we cannot use test set while training

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - *absolute* error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

- test set, ideal but we cannot use test set while training
- training set √

Example

 $\label{eq:predicted price} \mathsf{Predicted price} = \mathsf{price_per_sqft} \times \mathsf{square_footage} + \mathsf{fixed_expense}$

one model: price_per_sqft = 0.3K, fixed_expense = 210K

sqft	sale price (K)	prediction (K)	squared error
2000	810	810	0
2100	907	840	67^2
1100	312	540	228^2
5500	2,600	1,860	740^2
•••	•••	•••	
Total			$0 + 67^2 + 228^2 + 740^2 + \cdots$

Adjust price_per_sqft and fixed_expense such that the total squared error is minimized.

Input: $x \in \mathbb{R}^{D}$ (features, covariates, context, predictors, etc) Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, \mathsf{N}\}$

Input: $x \in \mathbb{R}^{D}$ (features, covariates, context, predictors, etc) Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) Training data: $\mathcal{D} = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f : \mathbb{R}^{\mathsf{D}} \to \mathbb{R}$, with $f(\boldsymbol{x}) = w_0 + \sum_{d=1}^{D} w_d x_d$

Input: $x \in \mathbb{R}^{D}$ (features, covariates, context, predictors, etc) Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) Training data: $\mathcal{D} = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f : \mathbb{R}^{\mathsf{D}} \to \mathbb{R}$, with $f(\boldsymbol{x}) = w_0 + \sum_{d=1}^{D} w_d x_d = w_0 + \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}$ (superscript T stands for transpose),

Input: $x \in \mathbb{R}^{D}$ (features, covariates, context, predictors, etc) Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) Training data: $\mathcal{D} = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f : \mathbb{R}^{D} \to \mathbb{R}$, with $f(\boldsymbol{x}) = w_{0} + \sum_{d=1}^{D} w_{d}x_{d} = w_{0} + \boldsymbol{w}^{T}\boldsymbol{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by • $\boldsymbol{w} = [w_{1} \ w_{2} \ \cdots \ w_{D}]^{T}$ (weights, weight vector, parameter vector, etc) • bias w_{0}

Input: $x \in \mathbb{R}^{D}$ (features, covariates, context, predictors, etc) Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) Training data: $\mathcal{D} = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f : \mathbb{R}^{D} \to \mathbb{R}$, with $f(\boldsymbol{x}) = w_{0} + \sum_{d=1}^{D} w_{d}x_{d} = w_{0} + \boldsymbol{w}^{T}\boldsymbol{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by • $\boldsymbol{w} = [w_{1} \ w_{2} \ \cdots \ w_{D}]^{T}$ (weights, weight vector, parameter vector, etc) • bias w_{0}

NOTE: for notation convenience, very often we

• append 1 to each x as the first feature: $\tilde{x} = [1 \ x_1 \ x_2 \ \dots \ x_D]^T$

Input: $x \in \mathbb{R}^{D}$ (features, covariates, context, predictors, etc) Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) Training data: $\mathcal{D} = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f : \mathbb{R}^{D} \to \mathbb{R}$, with $f(\boldsymbol{x}) = w_{0} + \sum_{d=1}^{D} w_{d}x_{d} = w_{0} + \boldsymbol{w}^{T}\boldsymbol{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by • $\boldsymbol{w} = [w_{1} \ w_{2} \ \cdots \ w_{D}]^{T}$ (weights, weight vector, parameter vector, etc) • bias w_{0}

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{\boldsymbol{x}} = [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}$
- let $\tilde{w} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$, a concise representation of all D+1 parameters

Input: $x \in \mathbb{R}^{D}$ (features, covariates, context, predictors, etc) Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) Training data: $\mathcal{D} = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f : \mathbb{R}^{D} \to \mathbb{R}$, with $f(\boldsymbol{x}) = w_{0} + \sum_{d=1}^{D} w_{d}x_{d} = w_{0} + \boldsymbol{w}^{T}\boldsymbol{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by • $\boldsymbol{w} = [w_{1} \ w_{2} \ \cdots \ w_{D}]^{T}$ (weights, weight vector, parameter vector, etc) • bias w_{0}

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{x} = [1 \ x_1 \ x_2 \ \dots \ x_D]^{\mathrm{T}}$
- let $\tilde{w} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$, a concise representation of all D+1 parameters
- the model becomes simply $f(\boldsymbol{x}) = \tilde{\boldsymbol{w}}^{\mathbf{T}} \tilde{\boldsymbol{x}}$

Input: $x \in \mathbb{R}^{D}$ (features, covariates, context, predictors, etc) Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) Training data: $\mathcal{D} = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f : \mathbb{R}^{D} \to \mathbb{R}$, with $f(\boldsymbol{x}) = w_{0} + \sum_{d=1}^{D} w_{d}x_{d} = w_{0} + \boldsymbol{w}^{T}\boldsymbol{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by • $\boldsymbol{w} = [w_{1} \ w_{2} \ \cdots \ w_{D}]^{T}$ (weights, weight vector, parameter vector, etc) • bias w_{0}

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{\boldsymbol{x}} = [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathsf{T}}$
- let $\tilde{w} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$, a concise representation of all D+1 parameters
- the model becomes simply $f(\boldsymbol{x}) = \tilde{\boldsymbol{w}}^{\mathbf{T}} \tilde{\boldsymbol{x}}$
- sometimes just use ${m w},{m x},{\sf D}$ for ${m ilde w},{m ilde x},{\sf D}+1!$

Minimize total squared error

$$\sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

Minimize total squared error

• Residual Sum of Squares (RSS), a function of $ilde{w}$

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_{n}) - y_{n})^{2} = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Minimize total squared error

• Residual Sum of Squares (RSS), a function of \tilde{w}

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_{n}) - y_{n})^{2} = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

• find $\tilde{w}^* = \underset{\tilde{w} \in \mathbb{R}^{D+1}}{\operatorname{argmin}} \operatorname{RSS}(\tilde{w})$, i.e. least squares solution (more generally called empirical risk minimizer)

Minimize total squared error

• Residual Sum of Squares (RSS), a function of \tilde{w}

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

- find $\tilde{w}^* = \underset{\tilde{w} \in \mathbb{R}^{D+1}}{\operatorname{argmin}} \operatorname{RSS}(\tilde{w})$, i.e. least squares solution (more generally called empirical risk minimizer)
- reduce machine learning to optimization

Minimize total squared error

• Residual Sum of Squares (RSS), a function of \tilde{w}

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_{n}) - y_{n})^{2} = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

- find $\tilde{w}^* = \underset{\tilde{w} \in \mathbb{R}^{D+1}}{\operatorname{argmin}} \operatorname{RSS}(\tilde{w})$, i.e. least squares solution (more generally called empirical risk minimizer)
- reduce machine learning to optimization
- in principle can apply any optimization algorithm, but linear regression admits a *closed-form solution*

Only one parameter w_0 : constant prediction $f(x) = w_0$

f is a horizontal line, where should it be?

Optimization objective becomes

$$\operatorname{RSS}(w_0) = \sum_n (w_0 - y_n)^2$$

(it's a *quadratic*
$$aw_0^2 + bw_0 + c$$
)

Optimization objective becomes

$$\begin{aligned} \operatorname{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad \text{(it's a quadratic } aw_0^2 + bw_0 + c)} \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \operatorname{cnt.} \end{aligned}$$

Optimization objective becomes

$$RSS(w_0) = \sum_n (w_0 - y_n)^2 \quad (\text{it's a } quadratic \ aw_0^2 + bw_0 + c)$$
$$= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \text{cnt.}$$
$$= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \text{cnt.}$$

Optimization objective becomes

$$RSS(w_0) = \sum_n (w_0 - y_n)^2 \quad (\text{it's a } quadratic } aw_0^2 + bw_0 + c)$$
$$= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \text{cnt.}$$
$$= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \text{cnt.}$$

It is clear that $w_0^* = \frac{1}{N} \sum_n y_n$, i.e. the average

Optimization objective becomes

$$RSS(w_0) = \sum_n (w_0 - y_n)^2 \quad (\text{it's a } quadratic \ aw_0^2 + bw_0 + c)$$
$$= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \text{cnt.}$$
$$= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \text{cnt.}$$

It is clear that $w_0^* = \frac{1}{N} \sum_n y_n$, i.e. the average

Exercise: what if we use absolute error instead of squared error?

Optimization objective becomes

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

Optimization objective becomes

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0 \\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \begin{array}{c} \sum_n (w_0 + w_1 x_n - y_n) = 0 \\ \sum_n (w_0 + w_1 x_n - y_n) x_n = 0 \end{cases}$$

Optimization objective becomes

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0\\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \sum_{n} (w_0 + w_1 x_n - y_n) = 0\\ \sum_{n} (w_0 + w_1 x_n - y_n) x_n = 0 \end{cases}$$

$$\Rightarrow \begin{array}{ll} Nw_0 + w_1 \sum_n x_n &= \sum_n y_n \\ w_0 \sum_n x_n + w_1 \sum_n x_n^2 &= \sum_n y_n x_n \end{array} \quad (a \text{ linear system})$$

Optimization objective becomes

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0\\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \sum_n (w_0 + w_1 x_n - y_n) = 0\\ \sum_n (w_0 + w_1 x_n - y_n) x_n = 0 \end{cases}$$

$$\Rightarrow \begin{array}{l} Nw_0 + w_1 \sum_n x_n &= \sum_n y_n \\ w_0 \sum_n x_n + w_1 \sum_n x_n^2 &= \sum_n y_n x_n \end{array} \quad (a \text{ linear system}) \\ \Rightarrow \left(\begin{array}{c} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{array} \right) \left(\begin{array}{c} w_0 \\ w_1 \end{array} \right) = \left(\begin{array}{c} \sum_n y_n \\ \sum_n x_n y_n \end{array} \right) \end{array}$$

$$\Rightarrow \left(\begin{array}{c} w_0^* \\ w_1^* \end{array}\right) = \left(\begin{array}{cc} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{array}\right)^{-1} \left(\begin{array}{c} \sum_n y_n \\ \sum_n x_n y_n \end{array}\right)$$

(assuming the matrix is invertible)

$$\Rightarrow \left(\begin{array}{c} w_0^* \\ w_1^* \end{array}\right) = \left(\begin{array}{cc} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{array}\right)^{-1} \left(\begin{array}{c} \sum_n y_n \\ \sum_n x_n y_n \end{array}\right)$$

(assuming the matrix is invertible)

Are stationary points minimizers?

$$\Rightarrow \left(\begin{array}{c} w_0^* \\ w_1^* \end{array}\right) = \left(\begin{array}{cc} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{array}\right)^{-1} \left(\begin{array}{c} \sum_n y_n \\ \sum_n x_n y_n \end{array}\right)$$

-1

(assuming the matrix is invertible)

Are stationary points minimizers?

• yes for **convex** objectives (RSS is convex in \tilde{w})

$$\Rightarrow \left(\begin{array}{c} w_0^* \\ w_1^* \end{array}\right) = \left(\begin{array}{cc} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{array}\right)^{-1} \left(\begin{array}{c} \sum_n y_n \\ \sum_n x_n y_n \end{array}\right)$$

(assuming the matrix is invertible)

Are stationary points minimizers?

• yes for **convex** objectives (RSS is convex in \tilde{w})

• not true in general

Objective

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Objective

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$abla ext{RSS}(ilde{m{w}}) = 2\sum_n ilde{m{x}}_n (ilde{m{x}}_n^{ ext{T}} ilde{m{w}} - y_n)$$

Objective

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) \propto \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}}\right) \tilde{\boldsymbol{w}} - \sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$

Objective

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2 \sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) \propto \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}} \right) \tilde{\boldsymbol{w}} - \sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$
$$= (\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}}) \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y}$$

where

$$\tilde{\boldsymbol{X}} = \begin{pmatrix} \tilde{\boldsymbol{x}}_1^{\mathrm{T}} \\ \tilde{\boldsymbol{x}}_2^{\mathrm{T}} \\ \vdots \\ \tilde{\boldsymbol{x}}_{\mathsf{N}}^{\mathrm{T}} \end{pmatrix} \in \mathbb{R}^{\mathsf{N} \times (D+1)}, \quad \boldsymbol{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{\mathsf{N}} \end{pmatrix} \in \mathbb{R}^{\mathsf{N}}$$

Objective

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2 \sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) \propto \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}} \right) \tilde{\boldsymbol{w}} - \sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$
$$= (\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}}) \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y} = \boldsymbol{0}$$

where

$$\tilde{\boldsymbol{X}} = \begin{pmatrix} \tilde{\boldsymbol{x}}_1^{\mathrm{T}} \\ \tilde{\boldsymbol{x}}_2^{\mathrm{T}} \\ \vdots \\ \tilde{\boldsymbol{x}}_{\mathsf{N}}^{\mathrm{T}} \end{pmatrix} \in \mathbb{R}^{\mathsf{N} \times (D+1)}, \quad \boldsymbol{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{\mathsf{N}} \end{pmatrix} \in \mathbb{R}^{\mathsf{N}}$$

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^{*} = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ (covariance matrix) is invertible for now.

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^{*} = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ (covariance matrix) is invertible for now.

Again by convexity $ilde{w}^*$ is the minimizer of RSS.

Setup and Algorithm

General least square solution

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^{*} = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ (covariance matrix) is invertible for now.

Again by convexity $ilde{w}^*$ is the minimizer of RSS.

Verify the solution when D = 1:

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}$$

Setup and Algorithm

General least square solution

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^{*} = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ (covariance matrix) is invertible for now.

Again by convexity $ilde{w}^*$ is the minimizer of RSS.

Verify the solution when D = 1:

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}$$

when $\mathsf{D}=0$: $(\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}})^{-1}=\frac{1}{N}$, $\tilde{m{X}}^{\mathrm{T}}m{y}=\sum_n y_n$

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2}$$

$$\begin{aligned} &\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \end{aligned}$$

$$\begin{aligned} &\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \operatorname{cnt.} \end{aligned}$$

$$\begin{aligned} &\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \operatorname{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right) + \operatorname{cnt.} \end{aligned}$$

$$\begin{aligned} &\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \operatorname{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right) + \operatorname{cnt.} \end{aligned}$$

Note:
$$\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right)\boldsymbol{u} = \left(\tilde{\boldsymbol{X}}\boldsymbol{u}\right)^{\mathrm{T}}\tilde{\boldsymbol{X}}\boldsymbol{u} = \|\tilde{\boldsymbol{X}}\boldsymbol{u}\|_{2}^{2} \geq 0$$
 and is 0 if $\boldsymbol{u} = 0$.

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2}$$
$$= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)$$
$$= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \operatorname{cnt.}$$
$$= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right) + \operatorname{cnt.}$$

Note:
$$\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right)\boldsymbol{u} = \left(\tilde{\boldsymbol{X}}\boldsymbol{u}\right)^{\mathrm{T}}\tilde{\boldsymbol{X}}\boldsymbol{u} = \|\tilde{\boldsymbol{X}}\boldsymbol{u}\|_{2}^{2} \geq 0$$
 and is 0 if $\boldsymbol{u} = 0$.
So $\tilde{\boldsymbol{w}}^{*} = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$ is the minimizer.

Computational complexity

Bottleneck of computing

$$ilde{oldsymbol{w}}^* = \left(ilde{oldsymbol{X}}^{ ext{T}} ilde{oldsymbol{X}}
ight)^{-1} ilde{oldsymbol{X}}^{ ext{T}} oldsymbol{y}$$

is to invert the matrix $ilde{m{X}}^{\mathrm{T}} ilde{m{X}} \in \mathbb{R}^{(\mathsf{D}+1) imes (\mathsf{D}+1)}$

• naively need $O(\mathsf{D}^3)$ time

Computational complexity

Bottleneck of computing

$$ilde{oldsymbol{w}}^* = \left(ilde{oldsymbol{X}}^{\mathrm{T}} ilde{oldsymbol{X}}
ight)^{-1} ilde{oldsymbol{X}}^{\mathrm{T}} oldsymbol{y}$$

is to invert the matrix $ilde{m{X}}^{\mathrm{T}} ilde{m{X}} \in \mathbb{R}^{(\mathsf{D}+1) imes (\mathsf{D}+1)}$

- naively need $O(\mathsf{D}^3)$ time
- there are many faster approaches (such as conjugate gradient)

What does that imply?

What does that imply?

$$\mathsf{Recall}\,\left(ilde{m{X}}^{\mathrm{T}} ilde{m{X}}
ight)m{w}^{*}= ilde{m{X}}^{\mathrm{T}}m{y}.$$

What does that imply?

Recall
$$\left(\tilde{X}^{\mathrm{T}} \tilde{X} \right) w^* = \tilde{X}^{\mathrm{T}} y$$
. If $\tilde{X}^{\mathrm{T}} \tilde{X}$ not invertible, this equation has
• no solution

What does that imply?

Recall
$$\left(ilde{m{X}}^{ ext{T}} ilde{m{X}}
ight)m{w}^* = ilde{m{X}}^{ ext{T}}m{y}$$
. If $ilde{m{X}}^{ ext{T}} ilde{m{X}}$ not invertible, this equation has

no solution

• or infinitely many solutions

What does that imply?

Recall
$$\left(ilde{m{X}}^{ ext{T}} ilde{m{X}}
ight)m{w}^* = ilde{m{X}}^{ ext{T}}m{y}$$
. If $ilde{m{X}}^{ ext{T}} ilde{m{X}}$ not invertible, this equation has

• no solution (\Rightarrow RSS has no minimizer? \checkmark)

• or infinitely many solutions (\Rightarrow infinitely many minimizers \checkmark)

Why would that happen?

Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

Example: D = N = 1

sqft	sale price
1000	500K

Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

Example: D = N = 1

sqft	sale price
1000	500K

Any line passing this single point is a minimizer of RSS.

How about the following?

$\mathsf{D}=1,\mathsf{N}=2$

sqft	sale price
1000	500K
1000	600K

How about the following?

D = 1, N = 2

sqft	sale price	
1000	500K	
1000	600K	

Any line passing the average is a minimizer of RSS.

How about the following?

D = 1, N = 2

sqft	sale price	
1000	500K	
1000	600K	

Any line passing the average is a minimizer of RSS.

D = 2, N = 3?

sqft	#bedroom	sale price
1000	2	500K
1500	3	700K
2000	4	800K

How about the following?

 $\mathsf{D}=1,\mathsf{N}=2$

sqft	sale price	
1000	500K	
1000	600K	

Any line passing the average is a minimizer of RSS.

D = 2, N = 3?

sqft	#bedroom	sale price
1000	2	500K
1500	3	700K
2000	4	800K

Again infinitely many minimizers.

How to resolve this issue?

Intuition: what does inverting $ilde{X}^{\mathrm{T}} ilde{X}$ do?

eigendecomposition:
$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathrm{D}} & 0 \\ 0 & \cdots & 0 & \lambda_{\mathrm{D}+1} \end{bmatrix} \boldsymbol{U}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$ are eigenvalues.

How to resolve this issue?

Intuition: what does inverting $ilde{m{X}}^{ ext{T}} ilde{m{X}}$ do?

eigendecomposition:
$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathrm{D}} & 0 \\ 0 & \cdots & 0 & \lambda_{\mathrm{D}+1} \end{bmatrix} \boldsymbol{U}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$ are eigenvalues.

inverse:
$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \frac{1}{\lambda_{1}} & 0 & \cdots & 0\\ 0 & \frac{1}{\lambda_{2}} & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots\\ 0 & \cdots & \frac{1}{\lambda_{\mathrm{D}}} & 0\\ 0 & \cdots & 0 & \frac{1}{\lambda_{\mathrm{D}+1}} \end{bmatrix} \boldsymbol{U}$$

i.e. just invert the eigenvalues

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

One natural fix: add something positive

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_{2} + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} + \lambda \end{bmatrix} \boldsymbol{U}$$

where $\lambda > 0$ and I is the identity matrix.

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

One natural fix: add something positive

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_{2} + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} + \lambda \end{bmatrix} \boldsymbol{U}$$

where $\lambda > 0$ and I is the identity matrix. Now it is invertible:

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I})^{-1} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \frac{1}{\lambda_{1}+\lambda} & 0 & \cdots & 0\\ 0 & \frac{1}{\lambda_{2}+\lambda} & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots\\ 0 & \cdots & \frac{1}{\lambda_{\mathsf{D}}+\lambda} & 0\\ 0 & \cdots & 0 & \frac{1}{\lambda_{\mathsf{D}+1}+\lambda} \end{bmatrix} \boldsymbol{U}$$

The solution becomes

$$\tilde{\boldsymbol{w}}^* = \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} + \lambda \boldsymbol{I}
ight)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$$

The solution becomes

$$\tilde{\boldsymbol{w}}^* = \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} \right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$$

• not a minimizer of the original RSS

The solution becomes

$$\tilde{\boldsymbol{w}}^* = \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} \right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$$

- not a minimizer of the original RSS
- more than an arbitrary hack (as we will see soon)

The solution becomes

$$\tilde{\boldsymbol{w}}^* = \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} \right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$$

- not a minimizer of the original RSS
- more than an arbitrary hack (as we will see soon)
- λ is a hyper-parameter, can be tuned by cross-validation.

Comparison to NNC

Non-parametric versus Parametric

- **Non-parametric methods**: the size of the model *grows* with the size of the training set.
 - e.g. NNC, the training set itself needs to be kept in order to predict. Thus, the size of the model is the size of the training set.

Comparison to NNC

Non-parametric versus Parametric

- Non-parametric methods: the size of the model *grows* with the size of the training set.
 - e.g. NNC, the training set itself needs to be kept in order to predict. Thus, the size of the model is the size of the training set.
- **Parametric methods**: the size of the model does *not grow* with the size of the training set N.
 - $\bullet\,$ e.g. linear regression, $\mathsf{D}+1$ parameters, independent of N.

Outline

2 Linear regression with nonlinear basis

Overfitting and preventing overfitting

A Detour of Numerical Optimization Methods

What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^{D} ooldsymbol{z}\in\mathbb{R}^{M}$$

to transform the data to a more complicated feature space

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^{D} ooldsymbol{z}\in\mathbb{R}^{M}$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^{D} ooldsymbol{z}\in\mathbb{R}^{M}$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

Regression with nonlinear basis

Model: $f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$ where $\boldsymbol{w} \in \mathbb{R}^{M}$

Regression with nonlinear basis

Model:
$$f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$$
 where $\boldsymbol{w} \in \mathbb{R}^M$

Objective:

$$\operatorname{RSS}(\boldsymbol{w}) = \sum_{n} \left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - y_{n} \right)^{2}$$

Regression with nonlinear basis

Model:
$$f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$$
 where $\boldsymbol{w} \in \mathbb{R}^M$

Objective:

$$\operatorname{RSS}(\boldsymbol{w}) = \sum_{n} \left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - y_{n} \right)^{2}$$

Similar least square solution:

$$oldsymbol{w}^* = ig(oldsymbol{\Phi}^{\mathrm{T}} oldsymbol{\Phi} ig)^{-1} oldsymbol{\Phi}^{\mathrm{T}} oldsymbol{y} \;\;\;\; extsf{where} \;\;\; oldsymbol{\Phi} = egin{pmatrix} oldsymbol{\phi}(oldsymbol{x}_2)^{\mathrm{T}} \ oldsymbol{\phi}(oldsymbol{x}_2)^{\mathrm{T}} \ dots \ oldsymbol{\phi}(oldsymbol{x}_N)^{\mathrm{T}} \end{pmatrix} \in \mathbb{R}^{N imes M}$$

Polynomial basis functions for $\mathsf{D}=1$

$$\boldsymbol{\phi}(x) = \begin{bmatrix} 1\\ x\\ x^2\\ \vdots\\ x^M \end{bmatrix} \quad \Rightarrow \quad f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

Polynomial basis functions for D = 1

$$\boldsymbol{\phi}(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \quad \Rightarrow \quad f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

Learning a linear model in the new space = learning an *M*-degree polynomial model in the original space

Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):

Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):

Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):

Why nonlinear?

Can I use a fancy linear feature map?

$$\boldsymbol{\phi}(\boldsymbol{x}) = \begin{bmatrix} x_1 - x_2 \\ 3x_4 - x_3 \\ 2x_1 + x_4 + x_5 \\ \vdots \end{bmatrix} = \boldsymbol{A}\boldsymbol{x} \quad \text{for some } \boldsymbol{A} \in \mathbb{R}^{\mathsf{M} \times \mathsf{D}}$$

Why nonlinear?

Can I use a fancy linear feature map?

$$\boldsymbol{\phi}(\boldsymbol{x}) = \begin{bmatrix} x_1 - x_2 \\ 3x_4 - x_3 \\ 2x_1 + x_4 + x_5 \\ \vdots \end{bmatrix} = \boldsymbol{A}\boldsymbol{x} \quad \text{for some } \boldsymbol{A} \in \mathbb{R}^{\mathsf{M} \times \mathsf{D}}$$

No, it basically *does nothing* since

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}} \sum_{n} \left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_{n} - y_{n} \right)^{2} = \min_{\boldsymbol{w}' \in \mathsf{Im}(\boldsymbol{A}^{\mathrm{T}}) \subset \mathbb{R}^{\mathsf{D}}} \sum_{n} \left(\boldsymbol{w}'^{\mathrm{T}} \boldsymbol{x}_{n} - y_{n} \right)^{2}$$

Why nonlinear?

Can I use a fancy linear feature map?

$$\boldsymbol{\phi}(\boldsymbol{x}) = \begin{bmatrix} x_1 - x_2 \\ 3x_4 - x_3 \\ 2x_1 + x_4 + x_5 \\ \vdots \end{bmatrix} = \boldsymbol{A}\boldsymbol{x} \quad \text{for some } \boldsymbol{A} \in \mathbb{R}^{\mathsf{M} \times \mathsf{D}}$$

No, it basically does nothing since

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}} \sum_{n} \left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_{n} - y_{n} \right)^{2} = \min_{\boldsymbol{w}' \in \mathsf{Im}(\boldsymbol{A}^{\mathrm{T}}) \subset \mathbb{R}^{\mathsf{D}}} \sum_{n} \left(\boldsymbol{w}'^{\mathrm{T}} \boldsymbol{x}_{n} - y_{n} \right)^{2}$$

We will see more nonlinear mappings soon.

Outline

Linear regression

Linear regression with nonlinear basis

Overfitting and preventing overfitting

A Detour of Numerical Optimization Methods

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

Underfitting and Overfitting

- $M \leq 2$ is underfitting the data
 - large training error
 - large test error
- $M\geq 9$ is overfitting the data
 - small training error
 - large test error

Underfitting and Overfitting

More complicated models \Rightarrow larger gap between training and test error

Underfitting and Overfitting

More complicated models \Rightarrow larger gap between training and test error

How to prevent overfitting?

The more, the merrier

The more, the merrier

The more, the merrier

The more, the merrier

More data \Rightarrow smaller gap between training and test error

Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

• use cross-validation to pick hyper-parameter M

Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

• use cross-validation to pick hyper-parameter M

When M or in general Φ is fixed, are there still other ways to control complexity?

Magnitude of weights

Least square solution for the polynomial example:

	M = 0	M = 1	M=3	M = 9
w_0	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

Magnitude of weights

Least square solution for the polynomial example:

	M = 0	M = 1	M=3	M = 9
w_0	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

Intuitively, large weights \Rightarrow more complex model

How to make w small?

Regularized linear regression: new objective

 $\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$

Goal: find $w^* = \operatorname{argmin}_w \mathcal{E}(w)$

How to make w small?

Regularized linear regression: new objective

 $\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$

Goal: find $\boldsymbol{w}^* = \operatorname{argmin}_w \mathcal{E}(\boldsymbol{w})$

- $R: \mathbb{R}^{\mathsf{D}} \to \mathbb{R}^+$ is the *regularizer*
 - ullet measure how complex the model w is, penalize complex models
 - common choices: $\|m{w}\|_2^2$, $\|m{w}\|_1$, etc.

How to make w small?

Regularized linear regression: new objective

 $\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$

Goal: find $w^* = \operatorname{argmin}_w \mathcal{E}(w)$

- $R: \mathbb{R}^{\mathsf{D}} \to \mathbb{R}^+$ is the *regularizer*
 - ullet measure how complex the model w is, penalize complex models
 - common choices: $\|m{w}\|_2^2$, $\|m{w}\|_1$, etc.
- $\lambda > 0$ is the *regularization coefficient*
 - $\lambda = 0$, no regularization
 - $\lambda \to +\infty$, $\boldsymbol{w} \to \operatorname{argmin}_w R(\boldsymbol{w})$
 - i.e. control trade-off between training error and complexity

The effect of λ

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0	0.35	0.35	0.13
w_1	232.37	4.74	-0.05
w_2	-5321.83	-0.77	-0.06
w_3	48568.31	-31.97	-0.06
w_4	-231639.30	-3.89	-0.03
w_5	640042.26	55.28	-0.02
w_6	-1061800.52	41.32	-0.01
w_7	1042400.18	-45.95	-0.00
w_8	-557682.99	-91.53	0.00
w_9	125201.43	72.68	0.01

Simple for $R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \mathrm{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$

Simple for $R(w) = ||w||_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$

Simple for $R(w) = ||w||_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$

Simple for $R(w) = ||w||_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \mathrm{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$

$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$

$$\Rightarrow (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

$$\Rightarrow \boldsymbol{w}^{*} = (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

Simple for $R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}) + 2\lambda\boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda\boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$
$$\Rightarrow \boldsymbol{w}^* = (\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda\boldsymbol{I})^{-1} \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$

Note the same form as in the fix when $X^T X$ is not invertible!

Simple for $R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$
$$\Rightarrow \boldsymbol{w}^* = (\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$

Note the same form as in the fix when $X^T X$ is not invertible!

For other regularizers, as long as it's **convex**, standard optimization algorithms can be applied.

Equivalent form

Regularization is also sometimes formulated as

 $\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$

where β is some hyper-parameter.

Equivalent form

Regularization is also sometimes formulated as

$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$

where β is some hyper-parameter.

Finding the solution becomes a *constrained optimization problem*.

Equivalent form

Regularization is also sometimes formulated as

 $\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$

where β is some hyper-parameter.

Finding the solution becomes a *constrained optimization problem*.

Choosing either λ or β can be done by cross-validation.

$$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I}
ight)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

$$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

Important to understand the derivation than remembering the formula

$$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

$$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

Preventing Overfitting: more data + regularization

Recall the question

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- *Train a model with a machine learning algorithm.* Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

1. Pick a set of models \mathcal{F}

• e.g.
$$\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

• e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$

1. Pick a set of models \mathcal{F}

• e.g.
$$\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

• e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$

2. Define **error/loss** L(y', y)

1. Pick a set of models \mathcal{F}

• e.g.
$$\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

• e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$

- 2. Define error/loss L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$\boldsymbol{f}^* = \operatorname*{argmin}_{f \in \mathcal{F}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

1. Pick a set of models \mathcal{F}

• e.g.
$$\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

• e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$

- 2. Define error/loss L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \operatorname*{argmin}_{f \in \mathcal{F}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$\boldsymbol{f}^* = \operatorname*{argmin}_{f \in \mathcal{F}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

1. Pick a set of models \mathcal{F}

• e.g.
$$\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

• e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$

- 2. Define error/loss L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \operatorname*{argmin}_{f \in \mathcal{F}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$\boldsymbol{f}^* = \operatorname*{argmin}_{f \in \mathcal{F}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

ML becomes optimization

Outline

4 A Detour of Numerical Optimization Methods

Numerical optimization

Problem setup

- Given: a function F(w)
- Goal: minimize F(w) (approximately)

First-order optimization methods

Two simple yet extremely popular methods

- Gradient Descent (GD): simple and fundamental
- Stochastic Gradient Descent (SGD): faster, effective for large-scale problems

First-order optimization methods

Two simple yet extremely popular methods

- Gradient Descent (GD): simple and fundamental
- Stochastic Gradient Descent (SGD): faster, effective for large-scale problems

Gradient is sometimes referred to as *first-order* information of a function. Therefore, these methods are called *first-order methods*.

First-order methods

Gradient Descent (GD)

GD: keep moving in the negative gradient direction

GD: keep moving in the *negative gradient direction* Start from some $w^{(0)}$. For t = 0, 1, 2, ...

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})$$

where $\eta>0$ is called step size or learning rate

GD: keep moving in the *negative gradient direction* Start from some $w^{(0)}$. For t = 0, 1, 2, ...

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})$$

where $\eta>0$ is called step size or learning rate

• in theory η should be set in terms of some parameters of F

GD: keep moving in the *negative gradient direction* Start from some $w^{(0)}$. For t = 0, 1, 2, ...

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})$$

where $\eta>0$ is called step size or learning rate

- in theory η should be set in terms of some parameters of F
- in practice we just try several small values

GD: keep moving in the *negative gradient direction* Start from some $w^{(0)}$. For t = 0, 1, 2, ...

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})$$

where $\eta > 0$ is called step size or learning rate

- in theory η should be set in terms of some parameters of F
- in practice we just try several small values
- might need to be changing over iterations (think F(w) = |w|)

GD: keep moving in the *negative gradient direction* Start from some $w^{(0)}$. For t = 0, 1, 2, ...

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})$$

where $\eta>0$ is called step size or learning rate

- in theory η should be set in terms of some parameters of F
- in practice we just try several small values
- might need to be changing over iterations (think F(w) = |w|)
- adaptive and automatic step size tuning is an active research area

Example:
$$F(w) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2$$
.

Example:
$$F(w) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2$$
. Gradient is

$$\frac{\partial F}{\partial w_1} = 2(w_1^2 - w_2)w_1 + w_1 - 1 \qquad \frac{\partial F}{\partial w_2} = -(w_1^2 - w_2)$$

Example:
$$F(w) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2$$
. Gradient is

$$\frac{\partial F}{\partial w_1} = 2(w_1^2 - w_2)w_1 + w_1 - 1 \qquad \frac{\partial F}{\partial w_2} = -(w_1^2 - w_2)$$

GD:

• Initialize
$$w_1^{(0)}$$
 and $w_2^{(0)}$ (to be 0 or *randomly*), $t=0$

Example:
$$F(\boldsymbol{w}) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2$$
. Gradient is

$$\frac{\partial F}{\partial w_1} = 2(w_1^2 - w_2)w_1 + w_1 - 1 \qquad \frac{\partial F}{\partial w_2} = -(w_1^2 - w_2)$$

GD:

• Initialize
$$w_1^{(0)}$$
 and $w_2^{(0)}$ (to be 0 or randomly), $t=0$
• do

$$\begin{split} w_1^{(t+1)} &\leftarrow w_1^{(t)} - \eta \left[2(w_1^{(t)}{}^2 - w_2^{(t)})w_1^{(t)} + w_1^{(t)} - 1 \right] \\ w_2^{(t+1)} &\leftarrow w_2^{(t)} - \eta \left[-(w_1^{(t)}{}^2 - w_2^{(t)}) \right] \\ t &\leftarrow t+1 \end{split}$$

Example:
$$F(\boldsymbol{w}) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2$$
. Gradient is

$$\frac{\partial F}{\partial w_1} = 2(w_1^2 - w_2)w_1 + w_1 - 1 \qquad \frac{\partial F}{\partial w_2} = -(w_1^2 - w_2)$$

GD:

• Initialize
$$w_1^{(0)}$$
 and $w_2^{(0)}$ (to be 0 or randomly), $t=0$
• do

$$\begin{split} w_1^{(t+1)} &\leftarrow w_1^{(t)} - \eta \left[2(w_1^{(t)}{}^2 - w_2^{(t)})w_1^{(t)} + w_1^{(t)} - 1 \right] \\ w_2^{(t+1)} &\leftarrow w_2^{(t)} - \eta \left[-(w_1^{(t)}{}^2 - w_2^{(t)}) \right] \\ t &\leftarrow t+1 \end{split}$$

• until $F(w^{(t)})$ does not change much or t reaches a fixed number

Intuition: by first-order Taylor approximation

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

Intuition: by first-order Taylor approximation

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

GD ensures

$$F(\boldsymbol{w}^{(t+1)}) \approx F(\boldsymbol{w}^{(t)}) - \eta \|\nabla F(\boldsymbol{w}^{(t)})\|_2^2 \le F(\boldsymbol{w}^{(t)})$$

Intuition: by first-order Taylor approximation

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

GD ensures

$$F(\boldsymbol{w}^{(t+1)}) \approx F(\boldsymbol{w}^{(t)}) - \eta \|\nabla F(\boldsymbol{w}^{(t)})\|_2^2 \le F(\boldsymbol{w}^{(t)})$$

reasonable η decreases function value

Intuition: by first-order Taylor approximation

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

GD ensures

$$F(\boldsymbol{w}^{(t+1)}) \approx F(\boldsymbol{w}^{(t)}) - \eta \|\nabla F(\boldsymbol{w}^{(t)})\|_2^2 \le F(\boldsymbol{w}^{(t)})$$

reasonable η decreases function value

but large η is unstable

Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction

SGD: keep moving in some *noisy* negative gradient direction

Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction

SGD: keep moving in some *noisy* negative gradient direction

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \tilde{\nabla} F(\boldsymbol{w}^{(t)})$$

where $\tilde{\nabla} F(\boldsymbol{w}^{(t)})$ is a random variable (called **stochastic gradient**) s.t.

$$\mathbb{E}\left[\tilde{\nabla}F(\boldsymbol{w}^{(t)})\right] = \nabla F(\boldsymbol{w}^{(t)}) \qquad \text{(unbiasedness)}$$

Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction

SGD: keep moving in some *noisy* negative gradient direction

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \tilde{\nabla} F(\boldsymbol{w}^{(t)})$$

where $\tilde{\nabla} F(\boldsymbol{w}^{(t)})$ is a random variable (called stochastic gradient) s.t.

$$\mathbb{E}\left[\tilde{\nabla}F(\boldsymbol{w}^{(t)})\right] = \nabla F(\boldsymbol{w}^{(t)}) \qquad \text{(unbiasedness)}$$

Key point: it could be *much faster to obtain a stochastic gradient!* (examples coming soon)

Many for both GD and SGD on convex objectives.

Many for both GD and SGD on convex objectives.

They tell you how many iterations t (in terms of ϵ) needed to achieve

$$F(\boldsymbol{w}^{(t)}) - F(\boldsymbol{w}^*) \le \epsilon$$

Many for both GD and SGD on convex objectives.

They tell you how many iterations t (in terms of ϵ) needed to achieve

$$F(\boldsymbol{w}^{(t)}) - F(\boldsymbol{w}^*) \le \epsilon$$

• usually SGD needs more iterations

Many for both GD and SGD on convex objectives.

They tell you how many iterations t (in terms of ϵ) needed to achieve

$$F(\boldsymbol{w}^{(t)}) - F(\boldsymbol{w}^*) \le \epsilon$$

- usually SGD needs more iterations
- but then again each iteration takes less time

Even for *nonconvex objectives*, some guarantees exist: e.g. how many iterations t (in terms of ϵ) needed to achieve

 $\|\nabla F(\boldsymbol{w}^{(t)})\| \le \epsilon$

Even for *nonconvex objectives*, some guarantees exist: e.g. how many iterations t (in terms of ϵ) needed to achieve

 $\|\nabla F(\boldsymbol{w}^{(t)})\| \le \epsilon$

• that is, how close $m{w}^{(t)}$ is as an approximate stationary point

Even for *nonconvex objectives*, some guarantees exist: e.g. how many iterations t (in terms of ϵ) needed to achieve

 $\|\nabla F(\boldsymbol{w}^{(t)})\| \le \epsilon$

- that is, how close $m{w}^{(t)}$ is as an approximate stationary point
- for convex objectives, stationary point \Rightarrow global minimizer

Even for *nonconvex objectives*, some guarantees exist: e.g. how many iterations t (in terms of ϵ) needed to achieve

 $\|\nabla F(\boldsymbol{w}^{(t)})\| \le \epsilon$

- that is, how close $m{w}^{(t)}$ is as an approximate stationary point
- for convex objectives, stationary point \Rightarrow global minimizer
- for nonconvex objectives, what does it mean?

A stationary point can be a local minimizer

 $f(w) = w^3 + w^2 - 5w$

A stationary point can be a **local minimizer** or even a **local/global maximizer**

 $f(w) = w^3 + w^2 - 5w$

A stationary point can be a **local minimizer** or even a **local/global maximizer** (but the latter is not an issue for GD/SGD).

 $f(w) = w^3 + w^2 - 5w$

•
$$f(w) = w_1^2 - w_2^2$$

•
$$f(w) = w_1^2 - w_2^2$$

•
$$\nabla f(\boldsymbol{w}) = (2w_1, -2w_2)$$

- $f(w) = w_1^2 w_2^2$
- $\nabla f(w) = (2w_1, -2w_2)$
- so $\boldsymbol{w}=(0,0)$ is stationary

A stationary point can also be *neither a local minimizer nor a local maximizer*!

- $f(w) = w_1^2 w_2^2$
- $\nabla f(w) = (2w_1, -2w_2)$
- so $\boldsymbol{w}=(0,0)$ is stationary
- local max for blue direction $(w_1 = 0)$

A stationary point can also be *neither a local minimizer nor a local maximizer*!

- $f(w) = w_1^2 w_2^2$
- $\nabla f(w) = (2w_1, -2w_2)$
- so $\boldsymbol{w} = (0,0)$ is stationary
- local max for blue direction $(w_1 = 0)$
- local min for green direction $(w_2 = 0)$

A stationary point can also be *neither a local minimizer nor a local maximizer*! This is called a **saddle point**.

- $f(w) = w_1^2 w_2^2$
- $\nabla f(w) = (2w_1, -2w_2)$
- so $\boldsymbol{w}=(0,0)$ is stationary
- local max for blue direction $(w_1 = 0)$
- local min for green direction $(w_2 = 0)$

A stationary point can also be *neither a local minimizer nor a local maximizer*! This is called a **saddle point**.

- $f(w) = w_1^2 w_2^2$
- $\nabla f(w) = (2w_1, -2w_2)$
- so $\boldsymbol{w} = (0,0)$ is stationary
- local max for blue direction $(w_1 = 0)$
- local min for green direction $(w_2 = 0)$
- but GD gets stuck at (0,0) only if initialized along the green direction

A stationary point can also be *neither a local minimizer nor a local maximizer*! This is called a **saddle point**.

- $f(w) = w_1^2 w_2^2$
- $\nabla f(w) = (2w_1, -2w_2)$
- so $\boldsymbol{w} = (0,0)$ is stationary
- local max for blue direction $(w_1 = 0)$
- local min for green direction $(w_2 = 0)$
- but GD gets stuck at (0,0) only if initialized along the green direction
- so not a real issue especially when initialized randomly

But not all saddle points look like a "saddle" ...

• $f(w) = w_1^2 + w_2^3$

- $f(w) = w_1^2 + w_2^3$
- $\nabla f(w) = (2w_1, 3w_2^2)$

- $\bullet \ f({\boldsymbol w}) = w_1^2 + w_2^3$
- $\nabla f(w) = (2w_1, 3w_2^2)$
- so $\boldsymbol{w}=(0,0)$ is stationary

- $\bullet \ f(\boldsymbol{w}) = w_1^2 + w_2^3$
- $\nabla f(w) = (2w_1, 3w_2^2)$
- so ${m w}=(0,0)$ is stationary
- not local min/max for blue direction $(w_1 = 0)$

- $f(w) = w_1^2 + w_2^3$
- $\nabla f(w) = (2w_1, 3w_2^2)$
- so $\boldsymbol{w}=(0,0)$ is stationary
- not local min/max for blue direction $(w_1 = 0)$
- GD gets stuck at (0,0) for any initial point with w₂ ≥ 0 and small η

But not all saddle points look like a "saddle" ...

- $f(w) = w_1^2 + w_2^3$
- $\nabla f(w) = (2w_1, 3w_2^2)$
- so $\boldsymbol{w}=(0,0)$ is stationary
- not local min/max for blue direction $(w_1 = 0)$
- GD gets stuck at (0,0) for any initial point with w₂ ≥ 0 and small η

Even worse, distinguishing local min and saddle point is generally NP-hard.

Summary:

• GD/SGD converges to a stationary point

- GD/SGD converges to a stationary point
- for convex objectives, this is all we need

- GD/SGD converges to a stationary point
- for convex objectives, this is all we need
- for nonconvex objectives, can get stuck at local minimizers or "bad" saddle points (random initialization escapes "good" saddle points)

- GD/SGD converges to a stationary point
- for convex objectives, this is all we need
- for nonconvex objectives, can get stuck at local minimizers or "bad" saddle points (random initialization escapes "good" saddle points)
- recent research shows that many problems have no "bad" saddle points or even "bad" local minimizers

- GD/SGD converges to a stationary point
- for convex objectives, this is all we need
- for nonconvex objectives, can get stuck at local minimizers or "bad" saddle points (random initialization escapes "good" saddle points)
- recent research shows that many problems have no "bad" saddle points or even "bad" local minimizers
- justify the practical effectiveness of GD/SGD (default method to try)

Recall the intuition of GD: we look at first-order Taylor approximation

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

Recall the intuition of GD: we look at first-order Taylor approximation

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

What if we look at second-order Taylor approximation?

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)}) + \frac{1}{2}(\boldsymbol{w} - \boldsymbol{w}^{(t)})^{\mathrm{T}}\boldsymbol{H}_{t}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

Recall the intuition of GD: we look at first-order Taylor approximation

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

What if we look at second-order Taylor approximation?

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)}) + \frac{1}{2}(\boldsymbol{w} - \boldsymbol{w}^{(t)})^{\mathrm{T}}\boldsymbol{H}_{t}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

where $m{H}_t =
abla^2 F(m{w}^{(t)}) \in \mathbb{R}^{\mathsf{D} imes \mathsf{D}}$ is the *Hessian* of F at $m{w}^{(t)}$, i.e.,

$$H_{t,ij} = \frac{\partial^2 F(\boldsymbol{w})}{\partial w_i \partial w_j} \Big|_{\boldsymbol{w} = \boldsymbol{w}^{(t)}}$$

(think "second derivative" when D = 1)

Newton method

If we minimize the second-order approximation (via "complete the square")

$$\begin{split} F(\boldsymbol{w}) \\ &\approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)}) + \frac{1}{2}(\boldsymbol{w} - \boldsymbol{w}^{(t)})^{\mathrm{T}}\boldsymbol{H}_{t}(\boldsymbol{w} - \boldsymbol{w}^{(t)}) \\ &= \frac{1}{2}\left(\boldsymbol{w} - \boldsymbol{w}^{(t)} + \boldsymbol{H}_{t}^{-1}\nabla F(\boldsymbol{w}^{(t)})\right)^{\mathrm{T}}\boldsymbol{H}_{t}\left(\boldsymbol{w} - \boldsymbol{w}^{(t)} + \boldsymbol{H}_{t}^{-1}\nabla F(\boldsymbol{w}^{(t)})\right) + \operatorname{cnt} \end{split}$$

Newton method

If we minimize the second-order approximation (via "complete the square")

$$\begin{split} F(\boldsymbol{w}) \\ &\approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)}) + \frac{1}{2}(\boldsymbol{w} - \boldsymbol{w}^{(t)})^{\mathrm{T}}\boldsymbol{H}_{t}(\boldsymbol{w} - \boldsymbol{w}^{(t)}) \\ &= \frac{1}{2}\left(\boldsymbol{w} - \boldsymbol{w}^{(t)} + \boldsymbol{H}_{t}^{-1}\nabla F(\boldsymbol{w}^{(t)})\right)^{\mathrm{T}}\boldsymbol{H}_{t}\left(\boldsymbol{w} - \boldsymbol{w}^{(t)} + \boldsymbol{H}_{t}^{-1}\nabla F(\boldsymbol{w}^{(t)})\right) + \operatorname{cnt} \boldsymbol{u}^{(t)} \end{split}$$

for convex F (so H_t is *positive semidefinite*) we obtain **Newton method**:

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)})$$

Comparing GD and Newton

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})$$
 (GD)

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)})$$
 (Newton)

Both are iterative optimization procedures,

Comparing GD and Newton

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})$$
 (GD)

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)})$$
 (Newton)

Both are iterative optimization procedures, but Newton method

• has no learning rate η (so no tuning needed!)

Comparing GD and Newton

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})$$
 (GD)

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)})$$
 (Newton)

- has no learning rate η (so no tuning needed!)
- converges super fast in terms of #iterations (for convex objectives)

Comparing GD and Newton

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})$$
 (GD)

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)})$$
 (Newton)

- has no learning rate η (so **no tuning needed!**)
- converges super fast in terms of #iterations (for convex objectives)
 - e.g. how many iterations needed when applied to a quadratic?

Comparing GD and Newton

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})$$
 (GD)

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)})$$
 (Newton)

- has no learning rate η (so **no tuning needed!**)
- converges super fast in terms of #iterations (for convex objectives)
 - e.g. how many iterations needed when applied to a quadratic?
- computing Hessian in each iteration is *very slow* though

Comparing GD and Newton

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})$$
 (GD)

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)})$$
 (Newton)

- has no learning rate η (so **no tuning needed!**)
- converges super fast in terms of #iterations (for convex objectives)
 - e.g. how many iterations needed when applied to a quadratic?
- computing Hessian in each iteration is *very slow* though
- does not really make sense for *nonconvex objectives* (but generally Hessian can be useful for escaping saddle points)