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Linear regression

Outline

1 Linear regression

2 Linear regression with nonlinear basis

3 Overfitting and preventing overfitting

4 A Detour of Numerical Optimization Methods
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Linear regression Motivation

Regression

Predicting a continuous outcome variable using past observations

Predicting future temperature (last lecture)

Predicting the amount of rainfall

Predicting the demand of a product

Predicting the sale price of a house

...

Key difference from classification

continuous vs discrete

measure prediction errors differently.

lead to quite different learning algorithms.

Linear Regression: regression with linear models
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Linear regression Motivation

Ex: Predicting the sale price of a house

Retrieve historical sales records (training data)
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Linear regression Motivation

Features used to predict
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Linear regression Motivation

Correlation between square footage and sale price
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Linear regression Motivation

Possibly linear relationship

Sale price ≈ price per sqft × square footage + fixed expense

(slope) (intercept)
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Linear regression Motivation

How to learn the unknown parameters?

How to measure error for one prediction?

The classification error (0-1 loss, i.e. right or wrong) is inappropriate
for continuous outcomes.

We can look at

absolute error: | prediction - sale price |
or squared error: (prediction - sale price)2 (most common)

Goal: pick the model (unknown parameters) that minimizes the
average/total prediction error, but on what set?

test set, ideal but we cannot use test set while training

training set ✓
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Linear regression Motivation

Example

Predicted price = price per sqft × square footage + fixed expense

one model: price per sqft = 0.3K, fixed expense = 210K

sqft sale price (K) prediction (K) squared error

2000 810 810 0

2100 907 840 672

1100 312 540 2282

5500 2,600 1,860 7402

· · · · · · · · · · · ·
Total 0 + 672 + 2282 + 7402 + · · ·

Adjust price per sqft and fixed expense such that the total squared error is
minimized.
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Linear regression Setup and Algorithm

Formal setup for linear regression

Input: x ∈ RD (features, covariates, context, predictors, etc)

Output: y ∈ R (responses, targets, outcomes, etc)

Training data: D = {(xn, yn), n = 1, 2, . . . ,N}

Linear model: f : RD → R, with f(x) = w0 +
∑D

d=1wdxd= w0 +wTx
(superscript T stands for transpose), i.e. a hyper-plane parametrized by

w = [w1 w2 · · · wD]
T (weights, weight vector, parameter vector, etc)

bias w0

NOTE: for notation convenience, very often we

append 1 to each x as the first feature: x̃ = [1 x1 x2 . . . xD]
T

let w̃ = [w0 w1 w2 · · · wD]
T, a concise representation of all D + 1

parameters
the model becomes simply f(x) = w̃Tx̃
sometimes just use w,x,D for w̃, x̃,D+ 1!
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Linear regression Setup and Algorithm

Goal

Minimize total squared error

Residual Sum of Squares (RSS), a function of w̃

RSS(w̃) =

∑
n

(f(xn)− yn)
2 =

∑
n

(x̃T
n w̃ − yn)

2

find w̃∗ = argmin
w̃∈RD+1

RSS(w̃), i.e. least squares solution (more

generally called empirical risk minimizer)

reduce machine learning to optimization

in principle can apply any optimization algorithm, but linear
regression admits a closed-form solution
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Linear regression Setup and Algorithm

Warm-up: D = 0

Only one parameter w0: constant prediction f(x) = w0

f is a horizontal line, where should it be?
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Linear regression Setup and Algorithm

Warm-up: D = 0

Optimization objective becomes

RSS(w0) =
∑
n

(w0 − yn)
2 (it’s a quadratic aw2

0 + bw0 + c)

= Nw2
0 − 2

(∑
n

yn

)
w0 + cnt.

= N

(
w0 −

1

N

∑
n

yn

)2

+ cnt.

It is clear that w∗
0 = 1

N

∑
n yn, i.e. the average

Exercise: what if we use absolute error instead of squared error?
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Linear regression Setup and Algorithm

Warm-up: D = 1

Optimization objective becomes

RSS(w̃) =
∑
n

(w0 + w1xn − yn)
2

General approach: find stationary points, i.e., points with zero gradient{
∂RSS(w̃)

∂w0
= 0

∂RSS(w̃)
∂w1

= 0
⇒

∑
n(w0 + w1xn − yn) = 0∑
n(w0 + w1xn − yn)xn = 0

⇒ Nw0 + w1
∑

n xn =
∑

n yn
w0
∑

n xn + w1
∑

n x
2
n =

∑
n ynxn

(a linear system)

⇒
(

N
∑

n xn∑
n xn

∑
n x

2
n

)(
w0

w1

)
=

( ∑
n yn∑

n xnyn

)
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Linear regression Setup and Algorithm

Least square solution for D = 1

⇒
(

w∗
0

w∗
1

)
=

(
N

∑
n xn∑

n xn
∑

n x
2
n

)−1( ∑
n yn∑

n xnyn

)
(assuming the matrix is invertible)

Are stationary points minimizers?

yes for convex objectives (RSS is convex in w̃)

not true in general
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Linear regression Setup and Algorithm

General least square solution

Objective

RSS(w̃) =
∑
n

(x̃T
n w̃ − yn)

2

Again, find stationary points (multivariate calculus)

∇RSS(w̃) = 2
∑
n

x̃n(x̃
T
n w̃ − yn)

∝
(∑

n

x̃nx̃
T
n

)
w̃ −

∑
n

x̃nyn

= (X̃TX̃)w̃ − X̃Ty = 0

where

X̃ =


x̃T
1

x̃T
2
...
x̃T
N

 ∈ RN×(D+1), y =


y1
y2
...
yN

 ∈ RN
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Linear regression Setup and Algorithm

General least square solution

(X̃TX̃)w̃ − X̃Ty = 0 ⇒ w̃∗ = (X̃TX̃)−1X̃Ty

assuming X̃TX̃ (covariance matrix) is invertible for now.

Again by convexity w̃∗ is the minimizer of RSS.

Verify the solution when D = 1:

X̃TX̃ =

(
1 1 · · · 1
x1 x2 · · · xN

)
1 x1
1 x2
· · · · · ·
1 xN

 =

(
N

∑
n xn∑

n xn
∑

n x
2
n

)

when D = 0: (X̃TX̃)−1 = 1
N , X̃Ty =

∑
n yn
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Linear regression Setup and Algorithm

Another approach

RSS is a quadratic, so let’s complete the square:

RSS(w̃) =
∑
n

(w̃Tx̃n − yn)
2 = ∥X̃w̃ − y∥22

=
(
X̃w̃ − y

)T (
X̃w̃ − y

)
= w̃TX̃TX̃w̃ − yTX̃w̃ − w̃TX̃Ty + cnt.

=
(
w̃ − (X̃TX̃)−1X̃Ty

)T (
X̃TX̃

)(
w̃ − (X̃TX̃)−1X̃Ty

)
+ cnt.

Note: uT
(
X̃TX̃

)
u =

(
X̃u

)T
X̃u = ∥X̃u∥22 ≥ 0 and is 0 if u = 0.

So w̃∗ = (X̃TX̃)−1X̃Ty is the minimizer.
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Linear regression Discussions

Computational complexity

Bottleneck of computing

w̃∗ =
(
X̃TX̃

)−1
X̃Ty

is to invert the matrix X̃TX̃ ∈ R(D+1)×(D+1)

naively need O(D3) time

there are many faster approaches (such as conjugate gradient)
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Linear regression Discussions

What if X̃TX̃ is not invertible

What does that imply?

Recall
(
X̃TX̃

)
w∗ = X̃Ty.

If X̃TX̃ not invertible, this equation has

no solution

(⇒ RSS has no minimizer? ✗)

or infinitely many solutions

(⇒ infinitely many minimizers ✓)
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Linear regression Discussions

What if X̃TX̃ is not invertible

Why would that happen?

One situation: N < D+1, i.e. not enough data to estimate all parameters.

Example: D = N = 1

sqft sale price

1000 500K

Any line passing this single point is a minimizer of RSS.
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Linear regression Discussions

How about the following?

D = 1,N = 2

sqft sale price

1000 500K

1000 600K

Any line passing the average is a minimizer of RSS.

D = 2,N = 3?

sqft #bedroom sale price

1000 2 500K

1500 3 700K

2000 4 800K

Again infinitely many minimizers.
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Linear regression Discussions

How to resolve this issue?

Intuition: what does inverting X̃TX̃ do?

eigendecomposition: X̃TX̃ = UT


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...
0 · · · λD 0
0 · · · 0 λD+1

U

where λ1 ≥ λ2 ≥ · · ·λD+1 ≥ 0 are eigenvalues.

inverse: (X̃TX̃)−1 = UT



1
λ1

0 · · · 0

0 1
λ2
· · · 0

...
...

...
...

0 · · · 1
λD

0

0 · · · 0 1
λD+1

U

i.e. just invert the eigenvalues
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Linear regression Discussions

How to solve this problem?

Non-invertible ⇒ some eigenvalues are 0.

One natural fix: add something positive

X̃TX̃ + λI = UT


λ1 + λ 0 · · · 0

0 λ2 + λ · · · 0
...

...
...

...
0 · · · λD + λ 0
0 · · · 0 λD+1 + λ

U

where λ > 0 and I is the identity matrix. Now it is invertible:

(X̃TX̃ + λI)−1 = UT



1
λ1+λ 0 · · · 0

0 1
λ2+λ · · · 0

...
...

...
...

0 · · · 1
λD+λ 0

0 · · · 0 1
λD+1+λ

U
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Linear regression Discussions

Fix the problem

The solution becomes

w̃∗ =
(
X̃TX̃ + λI

)−1
X̃Ty

not a minimizer of the original RSS

more than an arbitrary hack (as we will see soon)

λ is a hyper-parameter, can be tuned by cross-validation.
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Linear regression Discussions

Comparison to NNC

Non-parametric versus Parametric

Non-parametric methods: the size of the model grows with the size
of the training set.

e.g. NNC, the training set itself needs to be kept in order to predict.
Thus, the size of the model is the size of the training set.

Parametric methods: the size of the model does not grow with the
size of the training set N.

e.g. linear regression, D+ 1 parameters, independent of N.
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Linear regression with nonlinear basis

Outline

1 Linear regression

2 Linear regression with nonlinear basis

3 Overfitting and preventing overfitting

4 A Detour of Numerical Optimization Methods
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Linear regression with nonlinear basis

What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data

28 / 63



Linear regression with nonlinear basis

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

ϕ(x) : x ∈ RD → z ∈ RM

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for
the new feature space).
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Linear regression with nonlinear basis

Regression with nonlinear basis

Model: f(x) = wTϕ(x) where w ∈ RM

Objective:

RSS(w) =
∑
n

(
wTϕ(xn)− yn

)2
Similar least square solution:

w∗ =
(
ΦTΦ

)−1
ΦTy where Φ =


ϕ(x1)

T

ϕ(x2)
T

...
ϕ(xN )T

 ∈ RN×M
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Linear regression with nonlinear basis

Example

Polynomial basis functions for D = 1

ϕ(x) =


1
x
x2

...
xM

 ⇒ f(x) = w0 +

M∑
m=1

wmxm

Learning a linear model in the new space
= learning an M -degree polynomial model in the original space

31 / 63



Linear regression with nonlinear basis

Example

Polynomial basis functions for D = 1

ϕ(x) =


1
x
x2

...
xM

 ⇒ f(x) = w0 +

M∑
m=1

wmxm

Learning a linear model in the new space
= learning an M -degree polynomial model in the original space

31 / 63



Linear regression with nonlinear basis

Example

Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):
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Linear regression with nonlinear basis

Why nonlinear?

Can I use a fancy linear feature map?

ϕ(x) =


x1 − x2
3x4 − x3

2x1 + x4 + x5
...

 = Ax for some A ∈ RM×D

No, it basically does nothing since

min
w∈RM

∑
n

(
wTAxn − yn

)2
= min

w′∈Im(AT)⊂RD

∑
n

(
w′Txn − yn

)2

We will see more nonlinear mappings soon.
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Overfitting and preventing overfitting

Outline

1 Linear regression

2 Linear regression with nonlinear basis

3 Overfitting and preventing overfitting

4 A Detour of Numerical Optimization Methods
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Overfitting and preventing overfitting

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:
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Overfitting and preventing overfitting

Underfitting and Overfitting

M ≤ 2 is underfitting the data

large training error

large test error

M ≥ 9 is overfitting the data

small training error

large test error M

E
R
M
S

 

 

0 3 6 9
0

0.5

1
Training
Test

More complicated models ⇒ larger gap between training and test error

How to prevent overfitting?
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Overfitting and preventing overfitting

Method 1: use more training data

The more, the merrier
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More data ⇒ smaller gap between training and test error
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Overfitting and preventing overfitting

Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

use cross-validation to pick hyper-parameter M

When M or in general Φ is fixed, are there still other ways to control
complexity?
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Overfitting and preventing overfitting

Magnitude of weights

Least square solution for the polynomial example:

M = 0 M = 1 M = 3 M = 9

w0 0.19 0.82 0.31 0.35
w1 -1.27 7.99 232.37
w2 -25.43 -5321.83
w3 17.37 48568.31
w4 -231639.30
w5 640042.26
w6 -1061800.52
w7 1042400.18
w8 -557682.99
w9 125201.43

Intuitively, large weights ⇒ more complex model
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Overfitting and preventing overfitting

How to make w small?

Regularized linear regression: new objective

E(w) = RSS(w) + λR(w)

Goal: find w∗ = argminw E(w)

R : RD → R+ is the regularizer

measure how complex the model w is, penalize complex models

common choices: ∥w∥22, ∥w∥1, etc.

λ > 0 is the regularization coefficient

λ = 0, no regularization

λ→ +∞, w → argminw R(w)

i.e. control trade-off between training error and complexity
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Overfitting and preventing overfitting

The effect of λ

when we increase regularization coefficient λ

lnλ = −∞ lnλ = −18 lnλ = 0

w0 0.35 0.35 0.13
w1 232.37 4.74 -0.05
w2 -5321.83 -0.77 -0.06
w3 48568.31 -31.97 -0.06
w4 -231639.30 -3.89 -0.03
w5 640042.26 55.28 -0.02
w6 -1061800.52 41.32 -0.01
w7 1042400.18 -45.95 -0.00
w8 -557682.99 -91.53 0.00
w9 125201.43 72.68 0.01

41 / 63



Overfitting and preventing overfitting

The trade-off

when we increase regularization coefficient λ
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Overfitting and preventing overfitting

How to solve the new objective?

Simple for R(w) = ∥w∥22:

E(w) = RSS(w) + λ∥w∥22 = ∥Φw − y∥22 + λ∥w∥22

∇E(w) = 2(ΦTΦw −ΦTy) + 2λw = 0

⇒
(
ΦTΦ+ λI

)
w = ΦTy

⇒ w∗ =
(
ΦTΦ+ λI

)−1
ΦTy

Note the same form as in the fix when XTX is not invertible!

For other regularizers, as long as it’s convex, standard optimization
algorithms can be applied.
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Overfitting and preventing overfitting

Equivalent form

Regularization is also sometimes formulated as

argmin
w

RSS(w) subject to R(w) ≤ β

where β is some hyper-parameter.

Finding the solution becomes a constrained optimization problem.

Choosing either λ or β can be done by cross-validation.
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Overfitting and preventing overfitting

Summary

w∗ =
(
ΦTΦ+ λI

)−1
ΦTy

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

Preventing Overfitting: more data + regularization
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Overfitting and preventing overfitting

Recall the question

Typical steps of developing a machine learning system:

Collect data, split into training, development, and test sets.

Train a model with a machine learning algorithm. Most often we
apply cross-validation to tune hyper-parameters.

Evaluate using the test data and report performance.

Use the model to predict future/make decisions.

How to do the red part exactly?
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Overfitting and preventing overfitting

General idea to derive ML algorithms

1. Pick a set of models F
e.g. F = {f(x) = wTx | w ∈ RD}
e.g. F = {f(x) = wTΦ(x) | w ∈ RM}

2. Define error/loss L(y′, y)

3. Find empirical risk minimizer (ERM):

f∗ = argmin
f∈F

N∑
n=1

L(f(xn), yn)

or regularized empirical risk minimizer:

f∗ = argmin
f∈F

N∑
n=1

L(f(xn), yn) + λR(f)

ML becomes optimization
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A Detour of Numerical Optimization Methods

Outline

1 Linear regression

2 Linear regression with nonlinear basis

3 Overfitting and preventing overfitting

4 A Detour of Numerical Optimization Methods
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A Detour of Numerical Optimization Methods

Numerical optimization

Problem setup

Given: a function F (w)

Goal: minimize F (w) (approximately)
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A Detour of Numerical Optimization Methods First-order methods

First-order optimization methods

Two simple yet extremely popular methods

Gradient Descent (GD): simple and fundamental

Stochastic Gradient Descent (SGD): faster, effective for
large-scale problems

Gradient is sometimes referred to as first-order information of a function.
Therefore, these methods are called first-order methods.
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A Detour of Numerical Optimization Methods First-order methods

Gradient Descent (GD)

GD: keep moving in the negative gradient direction

Start from some w(0). For t = 0, 1, 2, . . .

w(t+1) ← w(t) − η∇F (w(t))

where η > 0 is called step size or learning rate

in theory η should be set in terms of some parameters of F

in practice we just try several small values

might need to be changing over iterations (think F (w) = |w|)

adaptive and automatic step size tuning is an active research area
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A Detour of Numerical Optimization Methods First-order methods

An example

Example: F (w) = 0.5(w2
1 − w2)

2 + 0.5(w1 − 1)2.

Gradient is

∂F

∂w1
= 2(w2

1 − w2)w1 + w1 − 1
∂F

∂w2
= −(w2

1 − w2)

GD:

Initialize w
(0)
1 and w

(0)
2 (to be 0 or randomly), t = 0

do

w
(t+1)
1 ← w

(t)
1 − η

[
2(w

(t)
1

2
− w

(t)
2 )w

(t)
1 + w

(t)
1 − 1

]
w

(t+1)
2 ← w

(t)
2 − η

[
−(w(t)

1

2
− w

(t)
2 )

]
t← t+ 1

until F (w(t)) does not change much or t reaches a fixed number
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A Detour of Numerical Optimization Methods First-order methods

Why GD?

Intuition: by first-order Taylor approximation

F (w) ≈ F (w(t)) +∇F (w(t))T(w −w(t))

GD ensures

F (w(t+1)) ≈ F (w(t))− η∥∇F (w(t))∥22 ≤ F (w(t))
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reasonable η decreases function value
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but large η is unstable

53 / 63



A Detour of Numerical Optimization Methods First-order methods

Why GD?

Intuition: by first-order Taylor approximation

F (w) ≈ F (w(t)) +∇F (w(t))T(w −w(t))

GD ensures

F (w(t+1)) ≈ F (w(t))− η∥∇F (w(t))∥22 ≤ F (w(t))

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

reasonable η decreases function value

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

but large η is unstable

53 / 63



A Detour of Numerical Optimization Methods First-order methods

Why GD?

Intuition: by first-order Taylor approximation

F (w) ≈ F (w(t)) +∇F (w(t))T(w −w(t))

GD ensures

F (w(t+1)) ≈ F (w(t))− η∥∇F (w(t))∥22 ≤ F (w(t))

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

reasonable η decreases function value

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

but large η is unstable

53 / 63



A Detour of Numerical Optimization Methods First-order methods

Why GD?

Intuition: by first-order Taylor approximation

F (w) ≈ F (w(t)) +∇F (w(t))T(w −w(t))

GD ensures

F (w(t+1)) ≈ F (w(t))− η∥∇F (w(t))∥22 ≤ F (w(t))

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

reasonable η decreases function value

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

but large η is unstable
53 / 63



A Detour of Numerical Optimization Methods First-order methods

Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction

SGD: keep moving in some noisy negative gradient direction

w(t+1) ← w(t) − η∇̃F (w(t))

where ∇̃F (w(t)) is a random variable (called stochastic gradient) s.t.

E
[
∇̃F (w(t))

]
= ∇F (w(t)) (unbiasedness)

Key point: it could be much faster to obtain a stochastic gradient!
(examples coming soon)
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — convex objectives

Many for both GD and SGD on convex objectives.

They tell you how many iterations t (in terms of ϵ) needed to achieve

F (w(t))− F (w∗) ≤ ϵ

usually SGD needs more iterations

but then again each iteration takes less time
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

Even for nonconvex objectives, some guarantees exist: e.g. how many
iterations t (in terms of ϵ) needed to achieve

∥∇F (w(t))∥ ≤ ϵ

that is, how close w(t) is as an approximate stationary point

for convex objectives, stationary point ⇒ global minimizer

for nonconvex objectives, what does it mean?
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can be a local minimizer

or even a local/global
maximizer (but the latter is not an issue for GD/SGD).
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f(w) = w3 + w2 − 5w
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can also be neither a local minimizer nor a local
maximizer!

This is called a saddle point.

f(w) = w2
1 − w2

2

∇f(w) = (2w1,−2w2)

so w = (0, 0) is stationary

local max for blue direction (w1 = 0)

local min for green direction (w2 = 0)

but GD gets stuck at (0, 0) only if
initialized along the green direction

so not a real issue especially when
initialized randomly
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

But not all saddle points look like a “saddle”...

f(w) = w2
1 + w3

2

∇f(w) = (2w1, 3w
2
2)

so w = (0, 0) is stationary

not local min/max for blue direction
(w1 = 0)

GD gets stuck at (0, 0) for any initial
point with w2 ≥ 0 and small η

Even worse, distinguishing local min and saddle point is generally NP-hard.
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees

Summary:

GD/SGD converges to a stationary point

for convex objectives, this is all we need

for nonconvex objectives, can get stuck at local minimizers or “bad”
saddle points (random initialization escapes “good” saddle points)

recent research shows that many problems have no “bad” saddle
points or even “bad” local minimizers

justify the practical effectiveness of GD/SGD (default method to try)
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A Detour of Numerical Optimization Methods Second-order methods

Second-order methods

Recall the intuition of GD: we look at first-order Taylor approximation

F (w) ≈ F (w(t)) +∇F (w(t))T(w −w(t))

What if we look at second-order Taylor approximation?

F (w) ≈ F (w(t)) +∇F (w(t))T(w −w(t)) +
1

2
(w −w(t))THt(w −w(t))

where Ht = ∇2F (w(t)) ∈ RD×D is the Hessian of F at w(t), i.e.,

Ht,ij =
∂2F (w)

∂wi∂wj

∣∣∣
w=w(t)

(think “second derivative” when D = 1)
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A Detour of Numerical Optimization Methods Second-order methods

Newton method

If we minimize the second-order approximation (via “complete the square”)

F (w)

≈ F (w(t)) +∇F (w(t))T(w −w(t)) +
1

2
(w −w(t))THt(w −w(t))

=
1

2

(
w −w(t) +H−1

t ∇F (w(t))
)T

Ht

(
w −w(t) +H−1

t ∇F (w(t))
)
+ cnt.

for convex F (so Ht is positive semidefinite)
we obtain Newton method:

w(t+1) ← w(t) −H−1
t ∇F (w(t))
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A Detour of Numerical Optimization Methods Second-order methods

Comparing GD and Newton

w(t+1) ← w(t) − η∇F (w(t)) (GD)

w(t+1) ← w(t) −H−1
t ∇F (w(t)) (Newton)

Both are iterative optimization procedures,

but Newton method

has no learning rate η (so no tuning needed!)

converges super fast in terms of #iterations (for convex objectives)

e.g. how many iterations needed when applied to a quadratic?

computing Hessian in each iteration is very slow though

does not really make sense for nonconvex objectives (but generally
Hessian can be useful for escaping saddle points)
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