CSCI567 Machine Learning (Fall 2024)

Prof. Dani Yogatama

University of Southern California

September 6, 2024

Outline

1 [Linear regression](#page-1-0)

[Linear regression with nonlinear basis](#page-86-0)

[Overfitting and preventing overfitting](#page-102-0)

4 [A Detour of Numerical Optimization Methods](#page-143-0)

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- \bullet ...

Key difference from classification

- continuous vs discrete
- **•** measure *prediction errors* differently.
- lead to quite different learning algorithms.

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- \bullet ...

Key difference from classification

- **•** continuous vs discrete
- **•** measure *prediction errors* differently.
- lead to quite different learning algorithms.

Linear Regression: regression with linear models

Ex: Predicting the sale price of a house

Retrieve historical sales records (training data)

Features used to predict

Property Details for 3620 South BUDLONG, Los Angeles, CA 90007

Details provided by i-Tech MLS and may not match the public record. Learn More

Correlation between square footage and sale price

Possibly linear relationship

Sale price \approx price_per_sqft \times square_footage + fixed_expense

Possibly linear relationship

Sale price \approx **price_per_sqft** \times square_footage + **fixed_expense**
(*slope*) (*intercept*) $(intexcept)$

How to measure error for one prediction?

• The classification error (0-1 loss, i.e. right or wrong) is *inappropriate* for continuous outcomes.

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
	- \bullet absolute error: | prediction sale price |

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. right or wrong) is *inappropriate* for continuous outcomes.
- We can look at
	- \bullet absolute error: | prediction sale price
	- or squared error: (prediction sale price)² (most common)

How to measure error for one prediction?

- \bullet The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
	- \bullet absolute error: | prediction sale price
	- or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error,

How to measure error for one prediction?

- \bullet The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
	- \bullet absolute error: | prediction sale price
	- or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but on what set?

How to measure error for one prediction?

- \bullet The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
	- \bullet absolute error: | prediction sale price
	- or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but on what set?

• test set, ideal but we cannot use test set while training

How to measure error for one prediction?

- \bullet The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
	- \bullet absolute error: | prediction sale price
	- or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but on what set?

- **•** test set, ideal but we cannot use test set while training
- training set √

Example

Predicted price = **price_per_sqft** \times square_footage + **fixed_expense**

one model: price per sqft $= 0.3K$, fixed expense $= 210K$

Adjust price per sqft and fixed expense such that the total squared error is minimized.

Input: $x \in \mathbb{R}^D$ (features, covariates, context, predictors, etc) **Output**: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Input: $x \in \mathbb{R}^D$ (features, covariates, context, predictors, etc) **Output**: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) **Training data**: $D = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f : \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d$

Input: $x \in \mathbb{R}^D$ (features, covariates, context, predictors, etc) **Output**: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $D = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f : \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$ (superscript T stands for transpose),

Input: $x \in \mathbb{R}^D$ (features, covariates, context, predictors, etc) **Output**: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $D = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f : \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$ (superscript T stands for transpose), i.e. a $\emph{hyper-plane}$ parametrized by $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_\textsf{D}]^\textsf{T}$ (weights, weight vector, parameter vector, etc) \bullet bias w_0

Input: $x \in \mathbb{R}^D$ (features, covariates, context, predictors, etc) **Output**: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) **Training data**: $D = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f : \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$ (superscript T stands for transpose), i.e. a $\emph{hyper-plane}$ parametrized by $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_\textsf{D}]^\textsf{T}$ (weights, weight vector, parameter vector, etc) \bullet bias w_0

NOTE: for notation convenience, very often we

append 1 to each x as the first feature: $\tilde{\bm{x}} = [1\; x_1\; x_2\; \dots \; x_{\mathsf{D}}]^{\text{T}}$

Input: $x \in \mathbb{R}^D$ (features, covariates, context, predictors, etc) **Output**: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) **Training data**: $D = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f : \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$ (superscript T stands for transpose), i.e. a $\emph{hyper-plane}$ parametrized by $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_\textsf{D}]^\textsf{T}$ (weights, weight vector, parameter vector, etc) \bullet bias w_0

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{\bm{x}} = [1\; x_1\; x_2\; \dots \; x_{\mathsf{D}}]^{\text{T}}$
- let $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_{\textsf{D}}]^{\textsf{T}}$, a concise representation of all $D+1$ parameters

Input: $x \in \mathbb{R}^D$ (features, covariates, context, predictors, etc) **Output**: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) **Training data:** $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f : \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$ (superscript T stands for transpose), i.e. a $\emph{hyper-plane}$ parametrized by $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_\textsf{D}]^\textsf{T}$ (weights, weight vector, parameter vector, etc) \bullet bias w_0

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{\bm{x}} = [1\; x_1\; x_2\; \dots \; x_{\mathsf{D}}]^{\text{T}}$
- let $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_{\textsf{D}}]^{\textsf{T}}$, a concise representation of all $D+1$ parameters
- the model becomes simply $f(\boldsymbol{x}) = \tilde{\boldsymbol{w}}^{\mathbf{T}}\tilde{\boldsymbol{x}}$

Input: $x \in \mathbb{R}^D$ (features, covariates, context, predictors, etc) **Output**: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) **Training data:** $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f : \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$ (superscript T stands for transpose), i.e. a $\emph{hyper-plane}$ parametrized by $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_\textsf{D}]^\textsf{T}$ (weights, weight vector, parameter vector, etc) \bullet bias w_0

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{\bm{x}} = [1\; x_1\; x_2\; \dots \; x_{\mathsf{D}}]^{\text{T}}$
- let $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_{\textsf{D}}]^{\textsf{T}}$, a concise representation of all $D+1$ parameters
- the model becomes simply $f(\boldsymbol{x}) = \tilde{\boldsymbol{w}}^{\mathbf{T}}\tilde{\boldsymbol{x}}$
- sometimes just use w, x, D for $\tilde{w}, \tilde{x}, D + 1!$

Minimize total squared error

$$
\sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2
$$

Minimize total squared error

• Residual Sum of Squares (RSS), a function of \tilde{w}

$$
RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2
$$

Minimize total squared error

• Residual Sum of Squares (RSS), a function of \tilde{w}

$$
RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2
$$

find $\tilde{\bm{w}}^* = \arg\!\min \mathrm{RSS}(\tilde{\bm{w}})$, i.e. least squares solution (more $\tilde{w} \in \mathbb{R}^{D+1}$ generally called empirical risk minimizer)

Minimize total squared error

• Residual Sum of Squares (RSS), a function of \tilde{w}

$$
RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2
$$

- find $\tilde{\bm{w}}^* = \arg\!\min \mathrm{RSS}(\tilde{\bm{w}})$, i.e. least squares solution (more $\tilde{w} \in \mathbb{R}^{D+1}$ generally called **empirical risk minimizer**)
- reduce machine learning to optimization

Minimize total squared error

• Residual Sum of Squares (RSS), a function of \tilde{w}

$$
RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2
$$

- find $\tilde{\bm{w}}^* = \arg\!\min \mathrm{RSS}(\tilde{\bm{w}})$, i.e. least squares solution (more $\tilde{w} \in \mathbb{R}^{D+1}$ generally called empirical risk minimizer)
- reduce machine learning to optimization
- **•** in principle can apply any optimization algorithm, but linear regression admits a *closed-form solution*

Only one parameter w_0 : constant prediction $f(x) = w_0$

 f is a horizontal line, where should it be?

Optimization objective becomes

$$
RSS(w_0) = \sum_n (w_0 - y_n)^2
$$

(it's a quadratic $aw_0^2 + bw_0 + c$)

Optimization objective becomes

$$
RSS(w_0) = \sum_{n} (w_0 - y_n)^2 \qquad \text{(it's a quadratic aw}_0^2 + bw_0 + c)
$$

$$
= Nw_0^2 - 2\left(\sum_{n} y_n\right)w_0 + \text{cnt.}
$$

Optimization objective becomes

$$
RSS(w_0) = \sum_{n} (w_0 - y_n)^2 \qquad \text{(it's a quadratic aw}_0^2 + bw_0 + c)
$$

$$
= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \text{cnt.}
$$

$$
= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \text{cnt.}
$$

Optimization objective becomes

$$
RSS(w_0) = \sum_{n} (w_0 - y_n)^2 \qquad \text{(it's a quadratic aw}_0^2 + bw_0 + c)
$$

$$
= Nw_0^2 - 2\left(\sum_{n} y_n\right)w_0 + \text{cnt.}
$$

$$
= N\left(w_0 - \frac{1}{N}\sum_{n} y_n\right)^2 + \text{cnt.}
$$

It is clear that $w_0^*=\frac{1}{N}$ $\frac{1}{N}\sum_n y_n$, i.e. the $\bf{average}$
Optimization objective becomes

$$
RSS(w_0) = \sum_{n} (w_0 - y_n)^2 \qquad \text{(it's a quadratic aw}_0^2 + bw_0 + c)
$$

$$
= Nw_0^2 - 2\left(\sum_{n} y_n\right)w_0 + \text{cnt.}
$$

$$
= N\left(w_0 - \frac{1}{N}\sum_{n} y_n\right)^2 + \text{cnt.}
$$

It is clear that $w_0^*=\frac{1}{N}$ $\frac{1}{N}\sum_n y_n$, i.e. the $\bf{average}$

Exercise: what if we use absolute error instead of squared error?

Optimization objective becomes

$$
RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2
$$

Optimization objective becomes

$$
RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2
$$

General approach: find stationary points, i.e., points with zero gradient

$$
\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0\\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \frac{\sum_n (w_0 + w_1 x_n - y_n)}{\sum_n (w_0 + w_1 x_n - y_n) x_n} = 0
$$

Optimization objective becomes

$$
RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2
$$

General approach: find stationary points, i.e., points with zero gradient

$$
\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0\\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \frac{\sum_n (w_0 + w_1 x_n - y_n)}{\sum_n (w_0 + w_1 x_n - y_n) x_n} = 0
$$

$$
\Rightarrow \frac{Nw_0 + w_1 \sum_n x_n}{w_0 \sum_n x_n + w_1 \sum_n x_n^2} = \sum_n y_n
$$
 (a linear system)

Optimization objective becomes

$$
RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2
$$

General approach: find stationary points, i.e., points with zero gradient

$$
\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0\\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \frac{\sum_n (w_0 + w_1 x_n - y_n)}{\sum_n (w_0 + w_1 x_n - y_n) x_n} = 0
$$

$$
\Rightarrow \frac{Nw_0 + w_1 \sum_n x_n}{w_0 \sum_n x_n + w_1 \sum_n x_n^2} = \sum_n y_n
$$
 (a linear system)

$$
\Rightarrow \left(\frac{N}{\sum_n x_n} \sum_n x_n\right) \left(\begin{array}{c} w_0 \\ w_1 \end{array}\right) = \left(\begin{array}{c} \sum_n y_n \\ \sum_n x_n y_n \end{array}\right)
$$

$$
\Rightarrow \left(\begin{array}{c}w_0^*\\w_1^*\end{array}\right)=\left(\begin{array}{cc}N&\sum_nx_n\\\sum_nx_n&\sum_nx_n^2\end{array}\right)^{-1}\left(\begin{array}{c}\sum_ny_n\\\sum_nx_ny_n\end{array}\right)
$$

(assuming the matrix is invertible)

$$
\Rightarrow \left(\begin{array}{c}w_0^*\\w_1^*\end{array}\right)=\left(\begin{array}{cc}N&\sum_nx_n\\\sum_nx_n&\sum_nx_n^2\end{array}\right)^{-1}\left(\begin{array}{c}\sum_ny_n\\\sum_nx_ny_n\end{array}\right)
$$

(assuming the matrix is invertible)

Are stationary points minimizers?

$$
\Rightarrow \left(\begin{array}{c}w_0^*\\w_1^*\end{array}\right) = \left(\begin{array}{cc}N&\sum_n x_n\\ \sum_n x_n & \sum_n x_n^2\end{array}\right)^{-1} \left(\begin{array}{c}\sum_n y_n\\ \sum_n x_n y_n\end{array}\right)
$$

(assuming the matrix is invertible)

Are stationary points minimizers?

• yes for **convex** objectives (RSS is convex in \tilde{w})

$$
\Rightarrow \left(\begin{array}{c}w_0^*\\w_1^*\end{array}\right) = \left(\begin{array}{cc}N&\sum_n x_n\\ \sum_n x_n & \sum_n x_n^2\end{array}\right)^{-1} \left(\begin{array}{c}\sum_n y_n\\ \sum_n x_n y_n\end{array}\right)
$$

(assuming the matrix is invertible)

Are stationary points minimizers?

- yes for **convex** objectives (RSS is convex in \tilde{w})
- not true in general

Objective

$$
\text{RSS}(\tilde{\boldsymbol{w}}) = \sum_n (\tilde{\boldsymbol{x}}_n^{\text{T}} \tilde{\boldsymbol{w}} - y_n)^2
$$

Objective

$$
RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2
$$

Again, find stationary points (multivariate calculus)

$$
\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2 \sum_{n} \tilde{\boldsymbol{x}}_n (\tilde{\boldsymbol{x}}_n^{\text{T}} \tilde{\boldsymbol{w}} - y_n)
$$

Objective

$$
\text{RSS}(\tilde{\boldsymbol{w}}) = \sum_n (\tilde{\boldsymbol{x}}_n^{\text{T}} \tilde{\boldsymbol{w}} - y_n)^2
$$

Again, find stationary points (multivariate calculus)

$$
\nabla \mathrm{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_n \tilde{\boldsymbol{x}}_n(\tilde{\boldsymbol{x}}_n^{\mathrm{T}}\tilde{\boldsymbol{w}} - y_n) \propto \left(\sum_n \tilde{\boldsymbol{x}}_n\tilde{\boldsymbol{x}}_n^{\mathrm{T}}\right)\tilde{\boldsymbol{w}} - \sum_n \tilde{\boldsymbol{x}}_n y_n
$$

Objective

$$
\text{RSS}(\tilde{\boldsymbol{w}}) = \sum_n (\tilde{\boldsymbol{x}}_n^{\text{T}} \tilde{\boldsymbol{w}} - y_n)^2
$$

Again, find stationary points (multivariate calculus)

$$
\nabla \mathrm{RSS}(\tilde{\boldsymbol{w}}) = 2 \sum_n \tilde{\boldsymbol{x}}_n (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n) \propto \left(\sum_n \tilde{\boldsymbol{x}}_n \tilde{\boldsymbol{x}}_n^{\mathrm{T}} \right) \tilde{\boldsymbol{w}} - \sum_n \tilde{\boldsymbol{x}}_n y_n
$$

$$
= (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}) \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

where

$$
\tilde{\mathbf{X}} = \left(\begin{array}{c} \tilde{\mathbf{x}}_1^{\mathrm{T}} \\ \tilde{\mathbf{x}}_2^{\mathrm{T}} \\ \vdots \\ \tilde{\mathbf{x}}_N^{\mathrm{T}} \end{array}\right) \in \mathbb{R}^{N \times (D+1)}, \quad \mathbf{y} = \left(\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_N \end{array}\right) \in \mathbb{R}^N
$$

Objective

$$
\text{RSS}(\tilde{\boldsymbol{w}}) = \sum_n (\tilde{\boldsymbol{x}}_n^{\text{T}} \tilde{\boldsymbol{w}} - y_n)^2
$$

Again, find stationary points (multivariate calculus)

$$
\nabla \mathrm{RSS}(\tilde{\boldsymbol{w}}) = 2 \sum_n \tilde{\boldsymbol{x}}_n (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n) \propto \left(\sum_n \tilde{\boldsymbol{x}}_n \tilde{\boldsymbol{x}}_n^{\mathrm{T}} \right) \tilde{\boldsymbol{w}} - \sum_n \tilde{\boldsymbol{x}}_n y_n
$$

$$
= (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}) \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} = \boldsymbol{0}
$$

where

$$
\tilde{\mathbf{X}} = \left(\begin{array}{c} \tilde{\mathbf{x}}_1^{\mathrm{T}} \\ \tilde{\mathbf{x}}_2^{\mathrm{T}} \\ \vdots \\ \tilde{\mathbf{x}}_N^{\mathrm{T}} \end{array}\right) \in \mathbb{R}^{N \times (D+1)}, \quad \mathbf{y} = \left(\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_N \end{array}\right) \in \mathbb{R}^N
$$

$$
(\tilde{\mathbf{X}}^{\mathrm{T}}\tilde{\mathbf{X}})\tilde{\mathbf{w}} - \tilde{\mathbf{X}}^{\mathrm{T}}\mathbf{y} = \mathbf{0} \quad \Rightarrow \quad \tilde{\mathbf{w}}^* = (\tilde{\mathbf{X}}^{\mathrm{T}}\tilde{\mathbf{X}})^{-1}\tilde{\mathbf{X}}^{\mathrm{T}}\mathbf{y}
$$

assuming $\tilde{X}^T \tilde{X}$ (covariance matrix) is invertible for now.

$$
(\tilde{\mathbf{X}}^{\mathrm{T}}\tilde{\mathbf{X}})\tilde{\mathbf{w}} - \tilde{\mathbf{X}}^{\mathrm{T}}\mathbf{y} = \mathbf{0} \quad \Rightarrow \quad \tilde{\mathbf{w}}^* = (\tilde{\mathbf{X}}^{\mathrm{T}}\tilde{\mathbf{X}})^{-1}\tilde{\mathbf{X}}^{\mathrm{T}}\mathbf{y}
$$

assuming $\tilde{X}^T \tilde{X}$ (covariance matrix) is invertible for now.

Again by convexity \tilde{w}^* is the minimizer of RSS.

$$
(\tilde{\mathbf{X}}^{\mathrm{T}}\tilde{\mathbf{X}})\tilde{\mathbf{w}} - \tilde{\mathbf{X}}^{\mathrm{T}}\mathbf{y} = \mathbf{0} \quad \Rightarrow \quad \tilde{\mathbf{w}}^* = (\tilde{\mathbf{X}}^{\mathrm{T}}\tilde{\mathbf{X}})^{-1}\tilde{\mathbf{X}}^{\mathrm{T}}\mathbf{y}
$$

assuming $\tilde{X}^T \tilde{X}$ (covariance matrix) is invertible for now.

Again by convexity \tilde{w}^* is the minimizer of RSS.

Verify the solution when $D = 1$:

$$
\tilde{\mathbf{X}}^{\mathrm{T}}\tilde{\mathbf{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_N \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_N \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}
$$

$$
(\tilde{\mathbf{X}}^{\mathrm{T}}\tilde{\mathbf{X}})\tilde{\mathbf{w}} - \tilde{\mathbf{X}}^{\mathrm{T}}\mathbf{y} = \mathbf{0} \quad \Rightarrow \quad \tilde{\mathbf{w}}^* = (\tilde{\mathbf{X}}^{\mathrm{T}}\tilde{\mathbf{X}})^{-1}\tilde{\mathbf{X}}^{\mathrm{T}}\mathbf{y}
$$

assuming $\tilde{X}^T \tilde{X}$ (covariance matrix) is invertible for now.

Again by convexity \tilde{w}^* is the minimizer of RSS.

Verify the solution when $D = 1$:

$$
\tilde{\mathbf{X}}^{\mathrm{T}}\tilde{\mathbf{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_N \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_N \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}
$$

when $\mathsf{D} = 0$: $(\tilde{\bm{X}}^\mathrm{T} \tilde{\bm{X}})^{-1} = \frac{1}{N}$ $\frac{1}{N}$, $\tilde{\bm X}^{\rm T}\bm y = \sum_n y_n$

$$
\text{RSS}(\tilde{\boldsymbol{w}}) = \sum_n (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n - y_n)^2 = \|\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\|_2^2
$$

$$
\begin{aligned} &\text{RSS}(\tilde{\boldsymbol{w}}) = \sum_n (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n - y_n)^2 = \|\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\|_2^2 \\ &= \left(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \end{aligned}
$$

$$
\begin{aligned} \text{RSS}(\tilde{\boldsymbol{w}}) &= \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \text{cnt.} \end{aligned}
$$

$$
\begin{aligned} &\text{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\text{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\text{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\text{T}} \tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\text{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\text{T}} \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y} + \text{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y}\right)^{\text{T}} \left(\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y}\right) + \text{cnt.} \end{aligned}
$$

$$
\begin{aligned} &\text{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\text{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\text{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\text{T}} \tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\text{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\text{T}} \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y} + \text{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y}\right)^{\text{T}} \left(\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y}\right) + \text{cnt.} \end{aligned}
$$

Note:
$$
\mathbf{u}^{\mathrm{T}}\left(\tilde{\mathbf{X}}^{\mathrm{T}}\tilde{\mathbf{X}}\right)\mathbf{u} = \left(\tilde{\mathbf{X}}\mathbf{u}\right)^{\mathrm{T}}\tilde{\mathbf{X}}\mathbf{u} = \|\tilde{\mathbf{X}}\mathbf{u}\|_2^2 \ge 0
$$
 and is 0 if $\mathbf{u} = 0$.

RSS is a **quadratic**, so let's complete the square:

$$
\begin{aligned} \text{RSS}(\tilde{\boldsymbol{w}}) &= \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \text{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right) + \text{cnt.} \end{aligned}
$$

Note: $\bm{u}^\mathrm{T}\left(\tilde{\bm{X}}^\mathrm{T}\tilde{\bm{X}}\right)\bm{u}=\left(\tilde{\bm{X}}\bm{u}\right)^\mathrm{T}\tilde{\bm{X}}\bm{u}=\|\tilde{\bm{X}}\bm{u}\|_2^2\geq 0$ and is 0 if $\bm{u}=0.$ So $\tilde{\bm{w}}^*=(\tilde{\bm{X}}^\mathrm{T}\tilde{\bm{X}})^{-1}\tilde{\bm{X}}^\mathrm{T}\bm{y}$ is the minimizer.

Computational complexity

Bottleneck of computing

$$
\tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right)^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}
$$

is to invert the matrix $\tilde{\bm{X}}^\mathrm{T}\tilde{\bm{X}} \in \mathbb{R}^{(\mathsf{D}+1)\times(\mathsf{D}+1)}$

naively need $O(\mathsf{D}^3)$ time

Computational complexity

Bottleneck of computing

$$
\tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right)^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}
$$

is to invert the matrix $\tilde{\bm{X}}^\mathrm{T}\tilde{\bm{X}} \in \mathbb{R}^{(\mathsf{D}+1)\times(\mathsf{D}+1)}$

- naively need $O(\mathsf{D}^3)$ time
- there are many faster approaches (such as conjugate gradient)

What does that imply?

What does that imply?

$$
\text{Recall } \left(\tilde{{\bm{X}}}^{\mathrm{T}} \tilde{{\bm{X}}} \right) {\bm{w}}^* = \tilde{{\bm{X}}}^{\mathrm{T}} {\bm{y}}.
$$

What does that imply?

Recall
$$
(\tilde{X}^T \tilde{X}) w^* = \tilde{X}^T y
$$
. If $\tilde{X}^T \tilde{X}$ not invertible, this equation has
• no solution

What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

What does that imply?

Recall
$$
\left(\tilde{X}^{\mathrm{T}}\tilde{X}\right)w^* = \tilde{X}^{\mathrm{T}}y
$$
. If $\tilde{X}^{\mathrm{T}}\tilde{X}$ not invertible, this equation has

• no solution

o or infinitely many solutions

What does that imply?

Recall $\left(\tilde{X}^\text{T} \tilde{X}\right)w^* = \tilde{X}^\text{T} y$. If $\tilde{X}^\text{T} \tilde{X}$ not invertible, this equation has

• no solution (\Rightarrow RSS has no minimizer? \bm{X})

o or infinitely many solutions (\Rightarrow infinitely many minimizers \checkmark)

What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

Why would that happen?

Why would that happen?

One situation: $N < D + 1$, i.e. not enough data to estimate all parameters.

Why would that happen?

One situation: $N < D+1$, i.e. not enough data to estimate all parameters.

Example: $D = N = 1$

What if $\tilde{\boldsymbol{X}}^\text{T} \tilde{\boldsymbol{X}}$ is not invertible

Why would that happen?

One situation: $N < D+1$, i.e. not enough data to estimate all parameters.

Example: $D = N = 1$

Any line passing this single point is a minimizer of RSS.

How about the following?

$$
\mathsf{D}=1,\mathsf{N}=2
$$

How about the following?

 $D = 1, N = 2$

Any line passing the average is a minimizer of RSS.

How about the following?

 $D = 1, N = 2$

Any line passing the average is a minimizer of RSS.

 $D = 2, N = 3?$

How about the following?

 $D = 1, N = 2$

Any line passing the average is a minimizer of RSS.

 $D = 2, N = 3?$

Again infinitely many minimizers.

How to resolve this issue?

Intuition: what does inverting $\tilde{X}^T \tilde{X}$ do?

eigendecomposition:
$$
\tilde{X}^T \tilde{X} = U^T
$$
\n
$$
\begin{bmatrix}\n\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \lambda_D & 0 \\
0 & \cdots & 0 & \lambda_{D+1}\n\end{bmatrix} U
$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$ are **eigenvalues**.

How to resolve this issue?

Intuition: what does inverting $\tilde{X}^T \tilde{X}$ do?

eigendecomposition:
$$
\tilde{X}^T \tilde{X} = U^T \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_D & 0 \\ 0 & \cdots & 0 & \lambda_{D+1} \end{bmatrix} U
$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$ are **eigenvalues**.

inverse:
$$
(\tilde{X}^T \tilde{X})^{-1} = U^T
$$

$$
\begin{bmatrix} \frac{1}{\lambda_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \frac{1}{\lambda_0} & 0 \\ 0 & \cdots & 0 & \frac{1}{\lambda_{D+1}} \end{bmatrix} U
$$

i.e. just invert the eigenvalues

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

One natural fix: add something positive

$$
\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} = \boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc} \lambda_1 + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_2 + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_D + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{D+1} + \lambda \end{array}\right] \boldsymbol{U}
$$

where $\lambda > 0$ and I is the identity matrix.

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

One natural fix: add something positive

$$
\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} = \boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc} \lambda_1 + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_2 + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_D + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{D+1} + \lambda \end{array}\right] \boldsymbol{U}
$$

where $\lambda > 0$ and I is the identity matrix. Now it is invertible:

$$
(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I})^{-1} = \boldsymbol{U}^{\mathrm{T}} \left[\begin{array}{cccc} \frac{1}{\lambda_1 + \lambda} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_2 + \lambda} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \frac{1}{\lambda_{\mathrm{D}} + \lambda} & 0 \\ 0 & \cdots & 0 & \frac{1}{\lambda_{\mathrm{D} + 1} + \lambda} \end{array} \right] \boldsymbol{U}
$$

The solution becomes

$$
\tilde{\boldsymbol{w}}^* = \left(\tilde{\boldsymbol{X}}^\mathrm{T} \tilde{\boldsymbol{X}} + \lambda \boldsymbol{I}\right)^{-1} \tilde{\boldsymbol{X}}^\mathrm{T} \boldsymbol{y}
$$

The solution becomes

$$
\tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}+\lambda\boldsymbol{I}\right)^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}
$$

• not a minimizer of the original RSS

The solution becomes

$$
\tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}+\lambda\boldsymbol{I}\right)^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}
$$

- not a minimizer of the original RSS
- more than an arbitrary hack (as we will see soon)

The solution becomes

$$
\tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}+\lambda\boldsymbol{I}\right)^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}
$$

- o not a minimizer of the original RSS
- more than an arbitrary hack (as we will see soon)
- λ is a *hyper-parameter*, can be tuned by cross-validation.

Comparison to NNC

Non-parametric versus Parametric

- \bullet **Non-parametric methods**: the size of the model *grows* with the size of the training set.
	- e.g. NNC, the training set itself needs to be kept in order to predict. Thus, the size of the model is the size of the training set.

Comparison to NNC

Non-parametric versus Parametric

- \bullet **Non-parametric methods**: the size of the model *grows* with the size of the training set.
	- e.g. NNC, the training set itself needs to be kept in order to predict. Thus, the size of the model is the size of the training set.
- Parametric methods: the size of the model does not grow with the size of the training set N.
	- e.g. linear regression, $D + 1$ parameters, independent of N.

Outline

2 [Linear regression with nonlinear basis](#page-86-0)

[Overfitting and preventing overfitting](#page-102-0)

4 [A Detour of Numerical Optimization Methods](#page-143-0)

What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$
\boldsymbol{\phi}(\boldsymbol{x}):\boldsymbol{x}\in\mathbb{R}^D\rightarrow\boldsymbol{z}\in\mathbb{R}^M
$$

to transform the data to a more complicated feature space

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$
\boldsymbol{\phi}(\boldsymbol{x}):\boldsymbol{x}\in\mathbb{R}^D\rightarrow\boldsymbol{z}\in\mathbb{R}^M
$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$
\boldsymbol{\phi}(\boldsymbol{x}):\boldsymbol{x}\in\mathbb{R}^D\rightarrow\boldsymbol{z}\in\mathbb{R}^M
$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

Regression with nonlinear basis

Model: $f(x) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(x)$ where $\boldsymbol{w} \in \mathbb{R}^M$

Regression with nonlinear basis

$$
\textbf{Model:} \ f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}) \ \text{where} \ \boldsymbol{w} \in \mathbb{R}^M
$$

Objective:

$$
\text{RSS}(\boldsymbol{w}) = \sum_n \left(\boldsymbol{w}^{\text{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) - y_n\right)^2
$$

Regression with nonlinear basis

$$
\textbf{Model:} \ f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}) \ \text{where} \ \boldsymbol{w} \in \mathbb{R}^M
$$

Objective:

$$
\text{RSS}(\boldsymbol{w}) = \sum_{n} (\boldsymbol{w}^{\text{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) - y_n)^2
$$

Similar least square solution:

$$
\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\rm T} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\rm T} \boldsymbol{y} \quad \text{where} \quad \boldsymbol{\Phi} = \left(\begin{array}{c} \boldsymbol{\phi}(\boldsymbol{x}_1)^{\rm T} \\ \boldsymbol{\phi}(\boldsymbol{x}_2)^{\rm T} \\ \vdots \\ \boldsymbol{\phi}(\boldsymbol{x}_N)^{\rm T} \end{array} \right) \in \mathbb{R}^{N \times M}
$$

Polynomial basis functions for $D = 1$

$$
\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \Rightarrow f(x) = w_0 + \sum_{m=1}^M w_m x^m
$$

Polynomial basis functions for $D = 1$

$$
\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \Rightarrow f(x) = w_0 + \sum_{m=1}^M w_m x^m
$$

Learning a linear model in the new space $=$ learning an M-degree polynomial model in the original space

Fitting a noisy sine function with a polynomial $(M = 0, 1, \text{or } 3)$:

Fitting a noisy sine function with a polynomial $(M = 0, 1, \text{or } 3)$:

Fitting a noisy sine function with a polynomial $(M = 0, 1, \text{or } 3)$:

Why nonlinear?

Can I use a fancy linear feature map?

$$
\phi(\boldsymbol{x}) = \left[\begin{array}{c} x_1 - x_2 \\ 3x_4 - x_3 \\ 2x_1 + x_4 + x_5 \\ \vdots \end{array}\right] = \boldsymbol{A}\boldsymbol{x} \quad \text{ for some } \boldsymbol{A} \in \mathbb{R}^{M \times D}
$$

Why nonlinear?

Can I use a fancy linear feature map?

$$
\phi(\boldsymbol{x}) = \left[\begin{array}{c} x_1 - x_2 \\ 3x_4 - x_3 \\ 2x_1 + x_4 + x_5 \\ \vdots \end{array}\right] = \boldsymbol{A}\boldsymbol{x} \quad \text{ for some } \boldsymbol{A} \in \mathbb{R}^{M \times D}
$$

No, it basically does nothing since

$$
\min_{\boldsymbol{w}\in\mathbb{R}^{\mathsf{M}}}\sum_{n}\left(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{x}_{n}-y_{n}\right)^{2}=\min_{\boldsymbol{w'}\in\mathsf{Im}(\boldsymbol{A}^{\mathrm{T}})\subset\mathbb{R}^{\mathsf{D}}}\sum_{n}\left(\boldsymbol{w'}^{\mathrm{T}}\boldsymbol{x}_{n}-y_{n}\right)^{2}
$$

Why nonlinear?

Can I use a fancy linear feature map?

$$
\phi(\boldsymbol{x}) = \left[\begin{array}{c} x_1 - x_2 \\ 3x_4 - x_3 \\ 2x_1 + x_4 + x_5 \\ \vdots \end{array}\right] = \boldsymbol{A}\boldsymbol{x} \quad \text{ for some } \boldsymbol{A} \in \mathbb{R}^{M \times D}
$$

No, it basically *does nothing* since

$$
\min_{\boldsymbol{w}\in\mathbb{R}^{\mathsf{M}}}\sum_{n}\left(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{x}_{n}-y_{n}\right)^{2}=\min_{\boldsymbol{w'}\in\mathsf{Im}(\boldsymbol{A}^{\mathrm{T}})\subset\mathbb{R}^{\mathsf{D}}}\sum_{n}\left(\boldsymbol{w'}^{\mathrm{T}}\boldsymbol{x}_{n}-y_{n}\right)^{2}
$$

We will see more nonlinear mappings soon.

Outline

[Linear regression](#page-1-0)

[Linear regression with nonlinear basis](#page-86-0)

3 [Overfitting and preventing overfitting](#page-102-0)

4 [A Detour of Numerical Optimization Methods](#page-143-0)

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

Underfitting and Overfitting

- $M \leq 2$ is *underfitting* the data
	- **o** large training error
	- **o** large test error
- $M > 9$ is overfitting the data
	- **•** small training error
	- large test error

Underfitting and Overfitting

- $M \leq 2$ is *underfitting* the data
	- **o** large training error
	- **o** large test error
- $M > 9$ is overfitting the data
	- **•** small training error
	- large test error

M ERMS 0 3 _M 6 9 0 0.5 1 **Training** Test

More complicated models \Rightarrow larger gap between training and test error

Underfitting and Overfitting

- $M \leq 2$ is *underfitting* the data
	- **o** large training error
	- large test error
- $M > 9$ is overfitting the data
	- **•** small training error
	- large test error

More complicated models \Rightarrow larger gap between training and test error

How to prevent overfitting?
The more, the merrier

The more, the merrier

The more, the merrier

The more, the merrier

More data \Rightarrow smaller gap between training and test error

Method 2: control the model complexity

For polynomial basis, the **degree** M clearly controls the complexity

 \bullet use cross-validation to pick hyper-parameter M

Method 2: control the model complexity

For polynomial basis, the **degree** M clearly controls the complexity

 \bullet use cross-validation to pick hyper-parameter M

When M or in general Φ is fixed, are there still other ways to control complexity?

Magnitude of weights

Least square solution for the polynomial example:

Magnitude of weights

Least square solution for the polynomial example:

Intuitively, large weights \Rightarrow more complex model

How to make w small?

Regularized linear regression: new objective

 $\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$

Goal: find $w^* = \operatorname{argmin}_w \mathcal{E}(w)$

How to make w small?

Regularized linear regression: new objective

 $\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$

Goal: find $w^* = \operatorname{argmin}_{w} \mathcal{E}(w)$

- $R:\mathbb{R}^{\mathsf{D}}\to\mathbb{R}^{+}$ is the *regularizer*
	- measure how complex the model w is, penalize complex models
	- common choices: $\|\boldsymbol{w}\|_2^2$, $\|\boldsymbol{w}\|_1$, etc.

How to make w small?

Regularized linear regression: new objective

 $\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$

Goal: find $w^* = \operatorname{argmin}_{w} \mathcal{E}(w)$

- $R:\mathbb{R}^{\mathsf{D}}\to\mathbb{R}^{+}$ is the *regularizer*
	- measure how complex the model w is, penalize complex models
	- common choices: $\|\boldsymbol{w}\|_2^2$, $\|\boldsymbol{w}\|_1$, etc.
- $\bullet \lambda > 0$ is the regularization coefficient
	- $\lambda = 0$, no regularization
	- $\lambda \to +\infty$, $w \to \operatorname{argmin}_w R(w)$
	- i.e. control **trade-off** between training error and complexity

The effect of λ

$$
\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2
$$

$$
\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2
$$

$$
\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0
$$

$$
\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2
$$

$$
\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0
$$

$$
\Rightarrow (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
$$

$$
\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2
$$

$$
\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0
$$

$$
\Rightarrow (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
$$

$$
\Rightarrow \boldsymbol{w}^* = (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
$$

Simple for $R(w) = ||w||_2^2$:

$$
\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2
$$

$$
\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0
$$

$$
\Rightarrow (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
$$

$$
\Rightarrow \boldsymbol{w}^* = (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
$$

Note the same form as in the fix when X^TX is not invertible!

Simple for $R(w) = ||w||_2^2$:

$$
\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2
$$

$$
\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0
$$

$$
\Rightarrow (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
$$

$$
\Rightarrow \boldsymbol{w}^* = (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
$$

Note the same form as in the fix when X^TX is not invertible!

For other regularizers, as long as it's **convex**, standard optimization algorithms can be applied.

Equivalent form

Regularization is also sometimes formulated as

 $\operatornamewithlimits{argmin}_{\bm{w}} \text{RSS}(w)$ subject to $R(\bm{w}) \leq \beta$ w

where β is some hyper-parameter.

Equivalent form

Regularization is also sometimes formulated as

$\operatornamewithlimits{argmin}_{\bm{w}} \text{RSS}(w)$ subject to $R(\bm{w}) \leq \beta$ w

where β is some hyper-parameter.

Finding the solution becomes a *constrained optimization problem*.

Equivalent form

Regularization is also sometimes formulated as

 $\operatornamewithlimits{argmin}_{\bm{w}} \text{RSS}(w)$ subject to $R(\bm{w}) \leq \beta$ \overline{u}

where β is some hyper-parameter.

Finding the solution becomes a *constrained optimization problem*.

Choosing either λ or β can be done by cross-validation.

$$
\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
$$

$$
\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\rm T} \boldsymbol{\Phi} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\rm T} \boldsymbol{y}
$$

Important to understand the derivation than remembering the formula

$$
\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\rm T} \boldsymbol{\Phi} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\rm T} \boldsymbol{y}
$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

$$
\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\rm T} \boldsymbol{\Phi} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\rm T} \boldsymbol{y}
$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

Preventing Overfitting: more data $+$ regularization

Recall the question

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the red part exactly?

1. Pick a set of **models** F

\n- **e** e.g.
$$
\mathcal{F} = \{f(x) = \mathbf{w}^T x \mid \mathbf{w} \in \mathbb{R}^D\}
$$
\n- **e** e.g. $\mathcal{F} = \{f(x) = \mathbf{w}^T \Phi(x) \mid \mathbf{w} \in \mathbb{R}^M\}$
\n

1. Pick a set of **models** F

\n- **•** e.g.
$$
\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}\}
$$
\n- **•** e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{M}}\}$
\n

2. Define **error/loss** $L(y', y)$

1. Pick a set of **models** F

\n- $$
e.g. \mathcal{F} = \{f(x) = \mathbf{w}^T x \mid \mathbf{w} \in \mathbb{R}^D\}
$$
\n- $e.g. \mathcal{F} = \{f(x) = \mathbf{w}^T \Phi(x) \mid \mathbf{w} \in \mathbb{R}^M\}$
\n

- 2. Define **error/loss** $L(y', y)$
- 3. Find empirical risk minimizer (ERM):

$$
\boldsymbol{f}^* = \operatornamewithlimits{argmin}_{f \in \mathcal{F}} \sum_{n=1}^N L(f(x_n), y_n)
$$

1. Pick a set of **models** F

\n- $$
e.g. \mathcal{F} = \{f(x) = \mathbf{w}^T x \mid \mathbf{w} \in \mathbb{R}^D\}
$$
\n- $e.g. \mathcal{F} = \{f(x) = \mathbf{w}^T \Phi(x) \mid \mathbf{w} \in \mathbb{R}^M\}$
\n

- 2. Define **error/loss** $L(y', y)$
- 3. Find empirical risk minimizer (ERM):

$$
\boldsymbol{f^*} = \operatornamewithlimits{argmin}_{f \in \mathcal{F}} \sum_{n=1}^N L(f(x_n), y_n)
$$

or regularized empirical risk minimizer:

$$
\boldsymbol{f}^* = \operatorname*{argmin}_{f \in \mathcal{F}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)
$$

1. Pick a set of **models** F

\n- $$
e.g. \mathcal{F} = \{f(x) = \mathbf{w}^T x \mid \mathbf{w} \in \mathbb{R}^D\}
$$
\n- $e.g. \mathcal{F} = \{f(x) = \mathbf{w}^T \Phi(x) \mid \mathbf{w} \in \mathbb{R}^M\}$
\n

- 2. Define **error/loss** $L(y', y)$
- 3. Find empirical risk minimizer (ERM):

$$
\boldsymbol{f^*} = \operatornamewithlimits{argmin}_{f \in \mathcal{F}} \sum_{n=1}^N L(f(x_n), y_n)
$$

or regularized empirical risk minimizer:

$$
\boldsymbol{f}^* = \operatorname*{argmin}_{f \in \mathcal{F}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)
$$

ML becomes optimization

Outline

[Linear regression](#page-1-0)

[Linear regression with nonlinear basis](#page-86-0)

[Overfitting and preventing overfitting](#page-102-0)

4 [A Detour of Numerical Optimization Methods](#page-143-0)
Numerical optimization

Problem setup

- Given: a function $F(w)$
- Goal: minimize $F(w)$ (approximately)

First-order optimization methods

Two simple yet extremely popular methods

- Gradient Descent (GD): simple and fundamental
- o Stochastic Gradient Descent (SGD): faster, effective for large-scale problems

First-order optimization methods

Two simple yet extremely popular methods

- **o Gradient Descent (GD):** simple and fundamental
- **Stochastic Gradient Descent (SGD)**: faster, effective for large-scale problems

Gradient is sometimes referred to as first-order information of a function. Therefore, these methods are called *first-order methods*.

GD: keep moving in the negative gradient direction

GD: keep moving in the *negative gradient direction* Start from some $\mathbf{w}^{(0)}$. For $t = 0, 1, 2, \ldots$

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})
$$

GD: keep moving in the *negative gradient direction* Start from some $\mathbf{w}^{(0)}$. For $t = 0, 1, 2, \ldots$

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})
$$

where $\eta > 0$ is called step size or learning rate

• in theory η should be set in terms of some parameters of F

GD: keep moving in the *negative gradient direction* Start from some $\mathbf{w}^{(0)}$. For $t = 0, 1, 2, \ldots$

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})
$$

- in theory η should be set in terms of some parameters of F
- in practice we just try several small values

GD: keep moving in the *negative gradient direction* Start from some $w^{(0)}$. For $t = 0, 1, 2, \ldots$

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})
$$

- in theory η should be set in terms of some parameters of F
- in practice we just try several small values
- might need to be **changing** over iterations (think $F(w) = |w|$)

GD: keep moving in the *negative gradient direction* Start from some $w^{(0)}$. For $t = 0, 1, 2, \ldots$

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})
$$

- in theory η should be set in terms of some parameters of F
- in practice we just try several small values
- might need to be **changing** over iterations (think $F(w) = |w|$)
- adaptive and automatic step size tuning is an active research area

Example:
$$
F(\mathbf{w}) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2
$$
.

Example:
$$
F(w) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2
$$
. Gradient is

$$
\frac{\partial F}{\partial w_1} = 2(w_1^2 - w_2)w_1 + w_1 - 1 \qquad \frac{\partial F}{\partial w_2} = -(w_1^2 - w_2)
$$

Example:
$$
F(w) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2
$$
. Gradient is

$$
\frac{\partial F}{\partial w_1} = 2(w_1^2 - w_2)w_1 + w_1 - 1 \qquad \frac{\partial F}{\partial w_2} = -(w_1^2 - w_2)
$$

GD:

Initialize $w_1^{(0)}$ $_1^{(0)}$ and $w_2^{(0)}$ $2^{(0)}$ (to be 0 or *randomly*), $t = 0$

Example:
$$
F(w) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2
$$
. Gradient is

$$
\frac{\partial F}{\partial w_1} = 2(w_1^2 - w_2)w_1 + w_1 - 1 \qquad \frac{\partial F}{\partial w_2} = -(w_1^2 - w_2)
$$

GD:

\n- Initialize
$$
w_1^{(0)}
$$
 and $w_2^{(0)}$ (to be 0 or randomly), $t = 0$
\n- do
\n

$$
w_1^{(t+1)} \leftarrow w_1^{(t)} - \eta \left[2(w_1^{(t)}^2 - w_2^{(t)})w_1^{(t)} + w_1^{(t)} - 1 \right]
$$

$$
w_2^{(t+1)} \leftarrow w_2^{(t)} - \eta \left[-(w_1^{(t)}^2 - w_2^{(t)}) \right]
$$

$$
t \leftarrow t + 1
$$

Example:
$$
F(w) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2
$$
. Gradient is

$$
\frac{\partial F}{\partial w_1} = 2(w_1^2 - w_2)w_1 + w_1 - 1 \qquad \frac{\partial F}{\partial w_2} = -(w_1^2 - w_2)
$$

GD:

\n- Initialize
$$
w_1^{(0)}
$$
 and $w_2^{(0)}$ (to be 0 or randomly), $t = 0$
\n- do
\n

$$
w_1^{(t+1)} \leftarrow w_1^{(t)} - \eta \left[2(w_1^{(t)}^2 - w_2^{(t)})w_1^{(t)} + w_1^{(t)} - 1 \right]
$$

$$
w_2^{(t+1)} \leftarrow w_2^{(t)} - \eta \left[-(w_1^{(t)}^2 - w_2^{(t)}) \right]
$$

$$
t \leftarrow t + 1
$$

until $F(\boldsymbol{w}^{(t)})$ does not change much or t reaches a fixed number

Intuition: by first-order Taylor approximation

$$
F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})
$$

Intuition: by first-order Taylor approximation

$$
F(\mathbf{w}) \approx F(\mathbf{w}^{(t)}) + \nabla F(\mathbf{w}^{(t)})^{\mathrm{T}}(\mathbf{w} - \mathbf{w}^{(t)})
$$

GD ensures

$$
F(\mathbf{w}^{(t+1)}) \approx F(\mathbf{w}^{(t)}) - \eta \|\nabla F(\mathbf{w}^{(t)})\|_2^2 \le F(\mathbf{w}^{(t)})
$$

Intuition: by first-order Taylor approximation

$$
F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})
$$

GD ensures

$$
F(\mathbf{w}^{(t+1)}) \approx F(\mathbf{w}^{(t)}) - \eta \|\nabla F(\mathbf{w}^{(t)})\|_2^2 \le F(\mathbf{w}^{(t)})
$$

reasonable η decreases function value

Intuition: by first-order Taylor approximation

$$
F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})
$$

GD ensures

$$
F(\mathbf{w}^{(t+1)}) \approx F(\mathbf{w}^{(t)}) - \eta \|\nabla F(\mathbf{w}^{(t)})\|_2^2 \le F(\mathbf{w}^{(t)})
$$

reasonable η decreases function value

but large η is unstable

Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction

SGD: keep moving in some *noisy* negative gradient direction

Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction

SGD: keep moving in some *noisy* negative gradient direction

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \tilde{\nabla} F(\boldsymbol{w}^{(t)})
$$

where $\tilde{\nabla}F(\boldsymbol{w}^{(t)})$ is a random variable (called ${\bf stochastic \ gradient})$ s.t.

$$
\mathbb{E}\left[\tilde{\nabla}F(\boldsymbol{w}^{(t)})\right] = \nabla F(\boldsymbol{w}^{(t)}) \qquad \text{(unbiasedness)}
$$

Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction

SGD: keep moving in some *noisy* negative gradient direction

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \tilde{\nabla} F(\boldsymbol{w}^{(t)})
$$

where $\tilde{\nabla}F(\boldsymbol{w}^{(t)})$ is a random variable (called ${\bf stochastic \ gradient})$ s.t.

$$
\mathbb{E}\left[\tilde{\nabla}F(\boldsymbol{w}^{(t)})\right] = \nabla F(\boldsymbol{w}^{(t)}) \qquad \text{(unbiasedness)}
$$

Key point: it could be *much faster to obtain a stochastic gradient!* (examples coming soon)

Many for both GD and SGD on convex objectives.

Many for both GD and SGD on **convex objectives**.

They tell you how many iterations t (in terms of ϵ) needed to achieve

$$
F(\boldsymbol{w}^{(t)}) - F(\boldsymbol{w}^*) \leq \epsilon
$$

Many for both GD and SGD on **convex objectives**.

They tell you how many iterations t (in terms of ϵ) needed to achieve

$$
F(\boldsymbol{w}^{(t)}) - F(\boldsymbol{w}^*) \leq \epsilon
$$

usually SGD needs more iterations

Many for both GD and SGD on **convex objectives**.

They tell you how many iterations t (in terms of ϵ) needed to achieve

$$
F(\boldsymbol{w}^{(t)}) - F(\boldsymbol{w}^*) \leq \epsilon
$$

- usually SGD needs more iterations
- **•** but then again each iteration takes less time

Even for *nonconvex objectives*, some guarantees exist: e.g. how many iterations t (in terms of ϵ) needed to achieve

 $\|\nabla F(\boldsymbol{w}^{(t)})\| \leq \epsilon$

Even for *nonconvex objectives*, some guarantees exist: e.g. how many iterations t (in terms of ϵ) needed to achieve

 $\|\nabla F(\boldsymbol{w}^{(t)})\| \leq \epsilon$

that is, how close $\bm{w}^{(t)}$ is as an \bm{a} pproximate stationary point

Even for *nonconvex objectives*, some guarantees exist: e.g. how many iterations t (in terms of ϵ) needed to achieve

 $\|\nabla F(\boldsymbol{w}^{(t)})\| \leq \epsilon$

- that is, how close $\bm{w}^{(t)}$ is as an \bm{a} pproximate stationary point
- for convex objectives, stationary point \Rightarrow global minimizer

Even for *nonconvex objectives*, some guarantees exist: e.g. how many iterations t (in terms of ϵ) needed to achieve

 $\|\nabla F(\boldsymbol{w}^{(t)})\| \leq \epsilon$

- that is, how close $\bm{w}^{(t)}$ is as an \bm{a} pproximate stationary point
- for convex objectives, stationary point \Rightarrow global minimizer
- for nonconvex objectives, what does it mean?

A stationary point can be a local minimizer

A stationary point can be a local minimizer or even a local/global maximizer

 $f(w) = w^3 + w^2 - 5w$

A stationary point can be a **local minimizer** or even a **local/global** maximizer (but the latter is not an issue for GD/SGD).

$$
\bullet\ f(\boldsymbol{w})=w_1^2-w_2^2
$$

$$
\bullet \ f(\boldsymbol{w}) = w_1^2 - w_2^2
$$

$$
\bullet \ \nabla f(\boldsymbol{w}) = (2w_1, -2w_2)
$$

- $f(\boldsymbol{w}) = w_1^2 w_2^2$
- $\bullet \nabla f(\bm{w}) = (2w_1, -2w_2)$
- so $w = (0, 0)$ is stationary

A stationary point can also be neither a local minimizer nor a local maximizer!

- $f(\boldsymbol{w}) = w_1^2 w_2^2$
- $\bullet \nabla f(\boldsymbol{w}) = (2w_1, -2w_2)$
- so $\mathbf{w} = (0,0)$ is stationary
- local max for blue direction $(w_1 = 0)$

A stationary point can also be *neither a local minimizer nor a local* maximizer!

- $f(\boldsymbol{w}) = w_1^2 w_2^2$
- $\bullet \ \nabla f(\bm{w}) = (2w_1, -2w_2)$
- so $\mathbf{w} = (0,0)$ is stationary
- local max for blue direction $(w_1 = 0)$
- local min for green direction $(w_2 = 0)$

A stationary point can also be neither a local minimizer nor a local maximizer! This is called a **saddle point**.

- $f(\boldsymbol{w}) = w_1^2 w_2^2$
- $\bullet \nabla f(w) = (2w_1, -2w_2)$
- so $\mathbf{w} = (0,0)$ is stationary
- local max for blue direction $(w_1 = 0)$
- local min for green direction $(w_2 = 0)$

A stationary point can also be neither a local minimizer nor a local maximizer! This is called a **saddle point**.

- $f(\boldsymbol{w}) = w_1^2 w_2^2$
- $\bullet \nabla f(w) = (2w_1, -2w_2)$
- so $\mathbf{w} = (0,0)$ is stationary
- local max for blue direction $(w_1 = 0)$
- local min for green direction $(w_2 = 0)$
- but GD gets stuck at $(0, 0)$ only if initialized along the green direction

A stationary point can also be neither a local minimizer nor a local maximizer! This is called a **saddle point**.

- $f(\boldsymbol{w}) = w_1^2 w_2^2$
- $\bullet \nabla f(w) = (2w_1, -2w_2)$
- so $\mathbf{w} = (0,0)$ is stationary
- local max for blue direction $(w_1 = 0)$
- local min for green direction $(w_2 = 0)$
- but GD gets stuck at $(0, 0)$ only if initialized along the green direction
- so not a real issue especially when initialized randomly

But not all saddle points look like a "saddle"...

 $f(\boldsymbol{w}) = w_1^2 + w_2^3$

- $f(\boldsymbol{w}) = w_1^2 + w_2^3$
- $\nabla f(\bm{w}) = (2w_1, 3w_2^2)$

- $f(\boldsymbol{w}) = w_1^2 + w_2^3$
- $\nabla f(\bm{w}) = (2w_1, 3w_2^2)$
- so $\boldsymbol{w} = (0,0)$ is stationary

- $f(\boldsymbol{w}) = w_1^2 + w_2^3$
- $\nabla f(\bm{w}) = (2w_1, 3w_2^2)$
- so $\boldsymbol{w} = (0,0)$ is stationary
- not local min/max for blue direction $(w_1 = 0)$

- $f(\boldsymbol{w}) = w_1^2 + w_2^3$
- $\nabla f(\bm{w}) = (2w_1, 3w_2^2)$
- so $w = (0, 0)$ is stationary
- not local min/max for blue direction $(w_1 = 0)$
- GD gets stuck at $(0, 0)$ for any initial point with $w_2 \geq 0$ and small η

But not all saddle points look like a "saddle"...

- $f(\boldsymbol{w}) = w_1^2 + w_2^3$
- $\nabla f(\bm{w}) = (2w_1, 3w_2^2)$
- so $w = (0, 0)$ is stationary
- not local min/max for blue direction $(w_1 = 0)$
- GD gets stuck at $(0, 0)$ for any initial point with $w_2 \geq 0$ and small η

Even worse, distinguishing local min and saddle point is generally NP-hard.

Summary:

• GD/SGD converges to a stationary point

- GD/SGD converges to a stationary point
- for convex objectives, this is all we need

- GD/SGD converges to a stationary point
- **•** for convex objectives, this is all we need
- for nonconvex objectives, can get stuck at local minimizers or "bad" saddle points (random initialization escapes "good" saddle points)

- **GD/SGD** converges to a stationary point
- **•** for convex objectives, this is all we need
- **•** for nonconvex objectives, can get stuck at local minimizers or "bad" saddle points (random initialization escapes "good" saddle points)
- recent research shows that many problems have no "bad" saddle points or even "bad" local minimizers

- **GD/SGD** converges to a stationary point
- **•** for convex objectives, this is all we need
- **•** for nonconvex objectives, can get stuck at local minimizers or "bad" saddle points (random initialization escapes "good" saddle points)
- recent research shows that many problems have no "bad" saddle points or even "bad" local minimizers
- \bullet justify the practical effectiveness of GD/SGD (default method to try)

Second-order methods

Recall the intuition of GD: we look at first-order Taylor approximation

$$
F(\mathbf{w}) \approx F(\mathbf{w}^{(t)}) + \nabla F(\mathbf{w}^{(t)})^{\mathrm{T}}(\mathbf{w} - \mathbf{w}^{(t)})
$$

Second-order methods

Recall the intuition of GD: we look at first-order Taylor approximation

$$
F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})
$$

What if we look at *second-order* Taylor approximation?

$$
F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)}) + \frac{1}{2}(\boldsymbol{w} - \boldsymbol{w}^{(t)})^{\mathrm{T}} \boldsymbol{H}_t(\boldsymbol{w} - \boldsymbol{w}^{(t)})
$$

Second-order methods

Recall the intuition of GD: we look at first-order **Taylor approximation**

$$
F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})
$$

What if we look at *second-order* Taylor approximation?

$$
F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)}) + \frac{1}{2}(\boldsymbol{w} - \boldsymbol{w}^{(t)})^{\mathrm{T}} \boldsymbol{H}_t(\boldsymbol{w} - \boldsymbol{w}^{(t)})
$$

where $\bm{H}_t = \nabla^2 F(\bm{w}^{(t)}) \in \mathbb{R}^{\textsf{D}\times\textsf{D}}$ is the \bm{H} essian of F at $\bm{w}^{(t)}$, i.e.,

$$
H_{t,ij} = \frac{\partial^2 F(\boldsymbol{w})}{\partial w_i \partial w_j}\Big|_{\boldsymbol{w} = \boldsymbol{w}^{(t)}}
$$

(think "second derivative" when $D = 1$)

Newton method

If we minimize the second-order approximation (via "complete the square")

$$
F(\mathbf{w})
$$

\n
$$
\approx F(\mathbf{w}^{(t)}) + \nabla F(\mathbf{w}^{(t)})^{\mathrm{T}}(\mathbf{w} - \mathbf{w}^{(t)}) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^{(t)})^{\mathrm{T}} \mathbf{H}_t(\mathbf{w} - \mathbf{w}^{(t)})
$$

\n
$$
= \frac{1}{2} (\mathbf{w} - \mathbf{w}^{(t)} + \mathbf{H}_t^{-1} \nabla F(\mathbf{w}^{(t)}))^{\mathrm{T}} \mathbf{H}_t (\mathbf{w} - \mathbf{w}^{(t)} + \mathbf{H}_t^{-1} \nabla F(\mathbf{w}^{(t)})) + \text{cnt.}
$$

Newton method

If we minimize the second-order approximation (via "complete the square")

$$
F(\mathbf{w})
$$

\n
$$
\approx F(\mathbf{w}^{(t)}) + \nabla F(\mathbf{w}^{(t)})^{\mathrm{T}}(\mathbf{w} - \mathbf{w}^{(t)}) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^{(t)})^{\mathrm{T}} \mathbf{H}_t(\mathbf{w} - \mathbf{w}^{(t)})
$$

\n
$$
= \frac{1}{2} (\mathbf{w} - \mathbf{w}^{(t)} + \mathbf{H}_t^{-1} \nabla F(\mathbf{w}^{(t)}))^{\mathrm{T}} \mathbf{H}_t (\mathbf{w} - \mathbf{w}^{(t)} + \mathbf{H}_t^{-1} \nabla F(\mathbf{w}^{(t)})) + \text{cnt.}
$$

for convex F (so H_t is *positive semidefinite*) we obtain **Newton method**:

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)})
$$

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})
$$
 (GD)

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)})
$$
 (Newton)

Both are iterative optimization procedures,

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})
$$
 (GD)

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)})
$$
 (Newton)

Both are iterative optimization procedures, but Newton method

• has no learning rate η (so no tuning needed!)

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})
$$
(GD)

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)})
$$
 (Newton)

- has no learning rate η (so no tuning needed!)
- converges **super fast** in terms of $\#$ iterations (for convex objectives)

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})
$$
 (GD)

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)})
$$
 (Newton)

- has no learning rate η (so no tuning needed!)
- converges **super fast** in terms of $\#$ iterations (for convex objectives)
	- e.g. how many iterations needed when applied to a quadratic?

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})
$$
(GD)

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)})
$$
 (Newton)

- has no learning rate η (so no tuning needed!)
- converges **super fast** in terms of $\#$ iterations (for convex objectives)
	- e.g. how many iterations needed when applied to a quadratic?
- **computing Hessian in each iteration is very slow though**

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})
$$
 (GD)

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)})
$$
 (Newton)

- has no learning rate η (so no tuning needed!)
- converges **super fast** in terms of $\#$ iterations (for convex objectives)
	- e.g. how many iterations needed when applied to a quadratic?
- **computing Hessian in each iteration is very slow though**
- does not really make sense for *nonconvex objectives* (but generally Hessian can be useful for escaping saddle points)