CSCI567 Machine Learning (Fall 2024)

Prof. Dani Yogatama

University of Southern California

Aug 30, 2024

Introduction

About

- Modern machine learning methods used in real-world AI applications.
- Focus on conceptual understanding of these methods.

Objectives

- Develop skills to grasp abstract ML concepts and think critically.
- Practice with hands on programming tasks.
- Preparation for studying advanced machine learning topics.

Prerequisites

- Undergraduate level training in probability and statistics, linear algebra, multivariate calculus.
 Important: attend today's discussion session to see if you have the required background.
- Programming in Python Not an intro-level CS course, no training of basic programming skills.

- Lectures: Fridays 2-4.20pm (SGM 123)
- Discussions: Fridays 4.30-5.20pm
- Course website: https://usc-tamagotchi.github.io/csci-567/24f/
- TAs: Yavuz Faruk Bakman, Robby Costales, Xiao Fu, Isabelle Lee, Sajjad Shahabi, Xinyan Yu
- No required textbook, lecture slides will be posted before class. Mathematics for Machine Learning https://mml-book.github.io/ Deep Learning https://www.deeplearningbook.org/

Grade

- Quiz 1 (10/4): 40%
- Quiz 2 (12/6): 40%
- Project report: 20%

Initial cut-offs

Final cut-offs will not be released

Course Project

An implementation focused project to assess real world machine learning skills done in a group of four.

- Choose a popular benchmark that is approved by at least two TAs (5 points).
- Implement a top performing baseline method *from scratch* that achieves comparable performance to the original implementation (10 points).
- Improve on the baseline (5 points).
- Write an intelligible report to present your results (5 points).

It is the fuel that powers state-of-the-art AI models.

Al is a civilization-altering technology that is going to transform the way we live.

Consumer products. speech-to-speech chatbot, search engine, stock price prediction, wearable devices.

Scientific applications. protein structure prediction, nuclear fusion, social network analysis.

The frontier of AI

- Pseudo artificial general intelligence.
- Chatbots that passed the Turing test.
- Realistic image generation.
- Short video generation.

Acquire the knowledge to apply state-of-the-art methods to solve real-world problems.

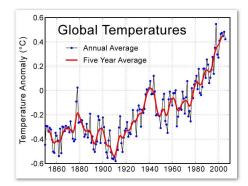
Analyze how existing models work to understand how to control them better.

Make progress towards superintelligence.

Foundations of Modern Machine Learning

- Data
- Model
- Loss function (objective function)
- Evaluation metric

Outline


Overview of machine learning

One possible definition (cf. Murphy's book)

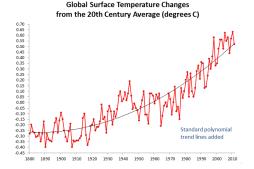
a set of methods that can automatically *detect patterns* in data, and then use the uncovered patterns to *predict future data*, or to perform other kinds of *decision making under uncertainty*

Example: detect patterns

How the temperature has been changing?

Example: detect patterns

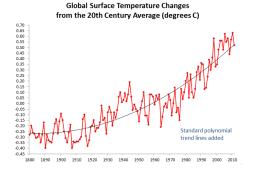
How the temperature has been changing?



Patterns

- Seems going up
- Repeated periods of going up and down.

How do we describe the pattern?


Build a model: fit the data with a polynomial function

- The model is not accurate for individual years
- But collectively, the model captures the major trend

Predicting future

What is temperature of 2030?

- Again, the model is probably inaccurate for that specific year
- But then, it might be close enough

What we have learned from this example?

Key ingredients in machine learning

Data

collected from past observation (we often call them *training data*)

What we have learned from this example?

Key ingredients in machine learning

Data

collected from past observation (we often call them *training data*)

Modeling

devised to capture the patterns in the data

• The model does not have to be true — "All models are wrong, but some are useful" by George Box.

What we have learned from this example?

Key ingredients in machine learning

Data

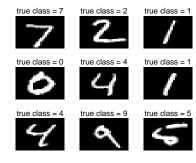
collected from past observation (we often call them *training data*)

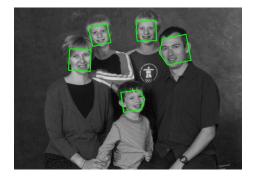
- Modeling devised to capture the patterns in the data
 - The model does not have to be true "All models are wrong, but some are useful" by George Box.
- Prediction

apply the model to forecast what is going to happen in future

A rich history of applying statistical learning methods

Recognizing flowers (by R. Fisher, 1936) Types of Iris: setosa, versicolor, and virginica




Huge success 30 years ago

Recognizing handwritten zipcodes (AT&T Labs, late 1990s)

More modern ones, in your social life

Recognizing your friends on Facebook

It might know more about you than yourself

Recommending what you might like

and look live berry April 111 (10)

- Jakes West

And in Sec. and

36.43

then its gift and becaused were

Different flavors of learning problems

• Supervised learning Aim to predict (as in previous examples)

Different flavors of learning problems

• Supervised learning Aim to predict (as in previous examples)

• Unsupervised learning Aim to discover hidden and latent patterns and explore data

Different flavors of learning problems

- Supervised learning Aim to predict (as in previous examples)
- Unsupervised learning Aim to discover hidden and latent patterns and explore data
- Decision making (e.g. reinforcement learning) Aim to act optimally under uncertainty

Different flavors of learning problems

- Supervised learning Aim to predict (as in previous examples)
- Unsupervised learning Aim to discover hidden and latent patterns and explore data
- Decision making (e.g. reinforcement learning) Aim to act optimally under uncertainty
- Many other paradigms