CSCI-567 Assignment 1

In this assignment, you’ll gain familiarity with PyTorch as you implement a few image
classifiers. You can find the code for the in-class MNIST demonstration here. You can
use it as much or as little as you'd like. You'll get the best practice if you avoid relying on
it and spend time with the PyTorch documentation. But the demo code is here to help
you get unstuck.

Dataset Loading

We will use CIFAR-10 as our dataset. Start by loading the dataset (see the PyTorch
documentation for guidance). Next, split the data into train, validation, and test spilits.
Normalize data to have mean 0 and standard deviation 1. This will improve training in
the next step.

Training Your Classifiers

MLP

Just as demonstrated in the discussion, you can Implement a classification model for
CIFAR-10 using MLP layers. You should be able to achieve 50% accuracy with three
linear layers with ReLU as the activation function.

CNN

Try to use CNN layers in your classifier. You should be able to achieve 60% accuracy
with three CNN layers.

ResNet

There is a widely used and powerful model architecture, ResNet. Fortunately, PyTorch
has a built-in implementation of it. Check its document and try to use ResNet to train
your classification model. You should be able to achieve 70% accuracy easily with
ResNet-18.

ResNet is based on CNN and batch normalization layers. Batch normalization is
implemented in PyTorch too (BatchNorm2D). Try to read the ResNet paper and



https://colab.research.google.com/drive/1d2mSWLiv93X2hgt9WV8IJFms9dQ6arLn?usp=sharing
https://www.cs.toronto.edu/~kriz/cifar.html
https://pytorch.org/vision/stable/generated/torchvision.datasets.CIFAR10.html#torchvision.datasets.CIFAR10
https://pytorch.org/vision/stable/generated/torchvision.datasets.CIFAR10.html#torchvision.datasets.CIFAR10
https://arxiv.org/abs/1512.03385
https://pytorch.org/vision/stable/models/resnet.html
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html
https://arxiv.org/abs/1512.03385

implement ResNet by yourself. You can check the correctness of your implementation
by comparing the performance of your implementation with the performance of the
built-in one.

Data Augmentation

Data augmentation is a technique people usually use when training a model. The main
idea is to perturb the input and use the perturbed data along with the original data to
train the model. This is as if we have more data to train the model. The library
torchvision implemented many commonly used perturbations that can be used for data
augmentation. Check the document and try to use some of them when training your
classifier. Using RandomHorizontalFlip and RandomCrop, you should be able to
achieve 80% accuracy easily with ResNet-18.

Model Analysis

Take a look at some examples of model predictions. When the model is incorrect, is it
incorrect in reasonable ways? Look into how the model misclassifies images using e.g.,
a confusion matrix.

Questions/Observations:

1. Do you observe that the accuracy of the training set is usually greater than the
accuracy of the testing set?

2. Do you observe that the accuracy of the testing set is usually close to the
accuracy of the validation set?

3. In your experiment, do you observe your model overfit? Do you observe that
ResNet-18 does not overfit as easily even though ResNet-18 has many
parameters?


https://pytorch.org/vision/stable/transforms.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html

