CSCI567 Machine Learning (Fall 2023)

Prof. Dani Yogatama
Slide Deck from Prof. Haipeng Luo
U of Southern California

Oct 27, 2023

Outline

(1) Review of last lecture
(2) Density estimation
(3) Naive Bayes
4. Principal Component Analysis (PCA)

Outline

(1) Review of last lecture

(2) Density estimation

(3) Naive Bayes
4. Principal Component Analysis (PCA)

The K-means algorithm

Step 0 Initialize $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$
Step 1 Fix the centers $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$, assign each point to the closest center:

$$
\gamma_{n k}=\mathbb{I}\left[k=\underset{c}{\operatorname{argmin}}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{c}\right\|_{2}^{2}\right]
$$

Step 2 Fix the assignment $\left\{\gamma_{n k}\right\}$, update the centers

$$
\boldsymbol{\mu}_{k}=\frac{\sum_{n} \gamma_{n k} \boldsymbol{x}_{n}}{\sum_{n} \gamma_{n k}}
$$

Step 3 Return to Step 1 if not converged

K-means++

K-means++ is K-means with a better initialization procedure:

Start with a random data point as the first center $\boldsymbol{\mu}_{1}$
For $k=2, \ldots, K$

- randomly pick the k-th center $\boldsymbol{\mu}_{k}$ such that

$$
\operatorname{Pr}\left[\boldsymbol{\mu}_{k}=\boldsymbol{x}_{n}\right] \propto \min _{j=1, \ldots, k-1}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{j}\right\|_{2}^{2}
$$

Intuitively this spreads out the initial centers.

Applying EM to learn GMMs (a soft version of K-means)

EM for clustering:
Step 0 Initialize $\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}$ for each $k \in[K]$
Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$
\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right) \propto \omega_{k} N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$
\begin{gathered}
\omega_{k}=\frac{\sum_{n} \gamma_{n k}}{N} \quad \boldsymbol{\mu}_{k}=\frac{\sum_{n} \gamma_{n k} \boldsymbol{x}_{n}}{\sum_{n} \gamma_{n k}} \\
\boldsymbol{\Sigma}_{k}=\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}}
\end{gathered}
$$

Step 3 return to Step 1 if not converged

General EM algorithm

Step 0 Initialize $\boldsymbol{\theta}^{(1)}, t=1$
Step 1 (E-Step) update the posterior of latent variables

$$
q_{n}^{(t)}(\cdot)=p\left(\cdot \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right)
$$

and obtain Expectation of complete likelihood

$$
Q\left(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)}\right)=\sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right)\right]
$$

Step 2 (M-Step) update the model parameter via Maximization

$$
\boldsymbol{\theta}^{(t+1)} \leftarrow \underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q\left(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)}\right)
$$

Step $3 t \leftarrow t+1$ and return to Step 1 if not converged

Outline

(1) Review of last lecture
(2) Density estimation

- Parametric methods
- Nonparametric methods
(3) Naive Bayes

4) Principal Component Analysis (PCA)

Density estimation

Observe what we have done indirectly for clustering with GMMs is:

Density estimation

Observe what we have done indirectly for clustering with GMMs is:
Given a training set $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}$, estimate a density function p that could have generated this dataset (via $\boldsymbol{x}_{n} \stackrel{i . i . d .}{\sim} p$).

Density estimation

Observe what we have done indirectly for clustering with GMMs is:
Given a training set $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}$, estimate a density function p that could have generated this dataset (via $\boldsymbol{x}_{n} \stackrel{\text { i.i.d. }}{\sim} p$).

This is exactly the problem of density estimation, another important unsupervised learning problem.

Density estimation

Observe what we have done indirectly for clustering with GMMs is:
Given a training set $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}$, estimate a density function p that could have generated this dataset (via $\boldsymbol{x}_{n} \stackrel{i . i . d .}{\sim} p$).

This is exactly the problem of density estimation, another important unsupervised learning problem.

Useful for many downstream applications

- we have seen clustering already, will see more today

Density estimation

Observe what we have done indirectly for clustering with GMMs is:
Given a training set $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}$, estimate a density function p that could have generated this dataset (via $\boldsymbol{x}_{n} \stackrel{i . i . d .}{\sim} p$).

This is exactly the problem of density estimation, another important unsupervised learning problem.

Useful for many downstream applications

- we have seen clustering already, will see more today
- these applications also provide a way to measure quality of the density estimator

Parametric methods: generative models

Parametric estimation assumes a generative model parametrized by $\boldsymbol{\theta}$:

$$
p(\boldsymbol{x})=p(\boldsymbol{x} ; \boldsymbol{\theta})
$$

Parametric methods: generative models

Parametric estimation assumes a generative model parametrized by $\boldsymbol{\theta}$:

$$
p(\boldsymbol{x})=p(\boldsymbol{x} ; \boldsymbol{\theta})
$$

Examples:

- GMM: $p(\boldsymbol{x} ; \boldsymbol{\theta})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$ where $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}$

Parametric methods: generative models

Parametric estimation assumes a generative model parametrized by $\boldsymbol{\theta}$:

$$
p(\boldsymbol{x})=p(\boldsymbol{x} ; \boldsymbol{\theta})
$$

Examples:

- GMM: $p(\boldsymbol{x} ; \boldsymbol{\theta})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$ where $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}$
- Multinomial: a discrete variable with values in $\{1,2, \ldots, K\}$ s.t.

$$
p(x=k ; \boldsymbol{\theta})=\theta_{k}
$$

where $\boldsymbol{\theta}$ is a distribution over K elements.

Parametric methods: generative models

Parametric estimation assumes a generative model parametrized by $\boldsymbol{\theta}$:

$$
p(\boldsymbol{x})=p(\boldsymbol{x} ; \boldsymbol{\theta})
$$

Examples:

- GMM: $p(\boldsymbol{x} ; \boldsymbol{\theta})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$ where $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}$
- Multinomial: a discrete variable with values in $\{1,2, \ldots, K\}$ s.t.

$$
p(x=k ; \boldsymbol{\theta})=\theta_{k}
$$

where $\boldsymbol{\theta}$ is a distribution over K elements.

Size of $\boldsymbol{\theta}$ is independent of the training set size, so it's parametric.

Parametric methods: estimation

Again, we apply MLE to learn the parameters $\boldsymbol{\theta}$:

$$
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln p\left(x_{n} ; \boldsymbol{\theta}\right)
$$

Parametric methods: estimation

Again, we apply MLE to learn the parameters $\boldsymbol{\theta}$:

$$
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln p\left(x_{n} ; \boldsymbol{\theta}\right)
$$

For some cases this is intractable and we can use EM to approximately solve MLE (e.g. GMMs).

Parametric methods: estimation

Again, we apply MLE to learn the parameters $\boldsymbol{\theta}$:

$$
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln p\left(x_{n} ; \boldsymbol{\theta}\right)
$$

For some cases this is intractable and we can use EM to approximately solve MLE (e.g. GMMs).

For some other cases this admits a simple closed-form solution (e.g. multinomial).

MLE for multinomial

The log-likelihood is

$$
\sum_{n=1}^{N} \ln p\left(x=x_{n} ; \boldsymbol{\theta}\right)=\sum_{n=1}^{N} \ln \theta_{x_{n}}
$$

MLE for multinomial

The log-likelihood is

$$
\begin{aligned}
& \sum_{n=1}^{N} \ln p\left(x=x_{n} ; \boldsymbol{\theta}\right)=\sum_{n=1}^{N} \ln \theta_{x_{n}} \\
& =\sum_{k=1}^{K} \sum_{n: x_{n}=k} \ln \theta_{k}
\end{aligned}
$$

MLE for multinomial

The log-likelihood is

$$
\begin{aligned}
& \sum_{n=1}^{N} \ln p\left(x=x_{n} ; \boldsymbol{\theta}\right)=\sum_{n=1}^{N} \ln \theta_{x_{n}} \\
& =\sum_{k=1}^{K} \sum_{n: x_{n}=k} \ln \theta_{k}=\sum_{k=1}^{K} z_{k} \ln \theta_{k}
\end{aligned}
$$

where $z_{k}=\left|\left\{n: x_{n}=k\right\}\right|$ is the number of examples with value k.

MLE for multinomial

The log-likelihood is

$$
\begin{aligned}
& \sum_{n=1}^{N} \ln p\left(x=x_{n} ; \boldsymbol{\theta}\right)=\sum_{n=1}^{N} \ln \theta_{x_{n}} \\
& =\sum_{k=1}^{K} \sum_{n: x_{n}=k} \ln \theta_{k}=\sum_{k=1}^{K} z_{k} \ln \theta_{k}
\end{aligned}
$$

where $z_{k}=\left|\left\{n: x_{n}=k\right\}\right|$ is the number of examples with value k.

The solution is simply

$$
\theta_{k}=\frac{z_{k}}{N} \propto z_{k}
$$

i.e. the fraction of examples with value k. (See HW4 Q1.1)

Nonparametric methods

Can we estimate without assuming a fixed generative model?

Nonparametric methods

Can we estimate without assuming a fixed generative model?

Yes, kernel density estimation (KDE) is a common approach

Nonparametric methods

Can we estimate without assuming a fixed generative model?

Yes, kernel density estimation (KDE) is a common approach

- here "kernel" means something different from what we have seen for "kernel function" (in fact it refers to several different things in ML)

Nonparametric methods

Can we estimate without assuming a fixed generative model?

Yes, kernel density estimation (KDE) is a common approach

- here "kernel" means something different from what we have seen for "kernel function" (in fact it refers to several different things in ML)
- the approach is nonparametric: it keeps the entire training set

Nonparametric methods

Can we estimate without assuming a fixed generative model?

Yes, kernel density estimation (KDE) is a common approach

- here "kernel" means something different from what we have seen for "kernel function" (in fact it refers to several different things in ML)
- the approach is nonparametric: it keeps the entire training set
- we focus on the one-dimensional (continuous) case

High level idea

Construct something similar to a histogram:

High level idea

Construct something similar to a histogram:

- for each data point, create a "bump" (via a Kernel)

High level idea

Construct something similar to a histogram:

- for each data point, create a "bump" (via a Kernel)
- sum up or average all the bumps

Kernel

KDE with a kernel $K: \mathbb{R} \rightarrow \mathbb{R}$:

$$
p(x)=\frac{1}{N} \sum_{n=1}^{N} K\left(x-x_{n}\right)
$$

Kernel

KDE with a kernel $K: \mathbb{R} \rightarrow \mathbb{R}$:

$$
p(x)=\frac{1}{N} \sum_{n=1}^{N} K\left(x-x_{n}\right)
$$

e.g. $K(u)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}}$, the standard Gaussian density

Kernel

KDE with a kernel $K: \mathbb{R} \rightarrow \mathbb{R}$:

$$
p(x)=\frac{1}{N} \sum_{n=1}^{N} K\left(x-x_{n}\right)
$$

e.g. $K(u)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}}$, the standard Gaussian density

Kernel needs to satisfy:

- symmetry: $K(u)=K(-u)$

Kernel

KDE with a kernel $K: \mathbb{R} \rightarrow \mathbb{R}$:

$$
p(x)=\frac{1}{N} \sum_{n=1}^{N} K\left(x-x_{n}\right)
$$

e.g. $K(u)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}}$, the standard Gaussian density

Kernel needs to satisfy:

- symmetry: $K(u)=K(-u)$
- $\int_{-\infty}^{\infty} K(u) d u=1$, makes sure p is a density function.

Different kernels $K(u)$

$$
\frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}}
$$

Gaussian Kernel

$\frac{1}{2} \mathbb{I}[|u| \leq 1]$

Uniform Kernel

$\frac{3}{4} \max \left\{1-x^{2}, 0\right\}$

Bandwidth

If $K(u)$ is a kernel, then for any $h>0$

$$
K_{h}(u) \triangleq \frac{1}{h} K\left(\frac{u}{h}\right)
$$

(stretching the kernel)

can be used as a kernel too (verify the two properties yourself)

Bandwidth

If $K(u)$ is a kernel, then for any $h>0$

$$
K_{h}(u) \triangleq \frac{1}{h} K\left(\frac{u}{h}\right)
$$

can be used as a kernel too (verify the two properties yourself)

So general KDE is determined by both the kernel K and the bandwidth h

$$
p(x)=\frac{1}{N} \sum_{n=1}^{N} K_{h}\left(x-x_{n}\right)=\frac{1}{N h} \sum_{n=1}^{N} K\left(\frac{x-x_{n}}{h}\right)
$$

Bandwidth

If $K(u)$ is a kernel, then for any $h>0$

$$
K_{h}(u) \triangleq \frac{1}{h} K\left(\frac{u}{h}\right)
$$

can be used as a kernel too (verify the two properties yourself)

So general KDE is determined by both the kernel K and the bandwidth h

$$
p(x)=\frac{1}{N} \sum_{n=1}^{N} K_{h}\left(x-x_{n}\right)=\frac{1}{N h} \sum_{n=1}^{N} K\left(\frac{x-x_{n}}{h}\right)
$$

- x_{n} controls the center of each bump

Bandwidth

If $K(u)$ is a kernel, then for any $h>0$

$$
K_{h}(u) \triangleq \frac{1}{h} K\left(\frac{u}{h}\right)
$$

can be used as a kernel too (verify the two properties yourself)

So general KDE is determined by both the kernel K and the bandwidth h

$$
p(x)=\frac{1}{N} \sum_{n=1}^{N} K_{h}\left(x-x_{n}\right)=\frac{1}{N h} \sum_{n=1}^{N} K\left(\frac{x-x_{n}}{h}\right)
$$

- x_{n} controls the center of each bump
- h controls the width/variance of the bumps

Effect of bandwidth

Larger h means larger variance and also smoother density

Gray curve is ground-truth

- Red: $h=0.05$
- Black: $h=0.337$
- Green: $h=2$

Bandwidth selection

Selecting h is a deep topic

- there are theoretically-motivated approaches

Bandwidth selection

Selecting h is a deep topic

- there are theoretically-motivated approaches
- one can also do cross-validation based on downstream applications

Outline

(1) Review of last lecture

(2) Density estimation
(3) Naive Bayes

- Setup and assumption
- Estimation and prediction
- Connection to logistic regression

4. Principal Component Analysis (PCA)

Naive Bayes

Naive Bayes

- a simple yet surprisingly powerful classification algorithm

Naive Bayes

Naive Bayes

- a simple yet surprisingly powerful classification algorithm
- density estimation is one important part of the algorithm

Bayes optimal classifier

Suppose (\boldsymbol{x}, y) is drawn from a joint distribution p. The Bayes optimal classifier is

Bayes optimal classifier

Suppose (\boldsymbol{x}, y) is drawn from a joint distribution p. The Bayes optimal classifier is

$$
f^{*}(\boldsymbol{x})=\underset{c \in[\mathrm{C}]}{\operatorname{argmax}} p(c \mid \boldsymbol{x})
$$

i.e. predict the class with the largest conditional probability.

Bayes optimal classifier

Suppose (\boldsymbol{x}, y) is drawn from a joint distribution p. The Bayes optimal classifier is

$$
f^{*}(\boldsymbol{x})=\underset{c \in[\mathrm{C}]}{\operatorname{argmax}} p(c \mid \boldsymbol{x})
$$

i.e. predict the class with the largest conditional probability.
p is of course unknown, but we can estimate it, which is exactly a density estimation problem!

Estimation

How to estimate a joint distribution? Observe we always have

$$
p(\boldsymbol{x}, y)=p(y) p(\boldsymbol{x} \mid y)
$$

Estimation

How to estimate a joint distribution? Observe we always have

$$
p(\boldsymbol{x}, y)=p(y) p(\boldsymbol{x} \mid y)
$$

We know how to estimate $p(y)$ by now.

Estimation

How to estimate a joint distribution? Observe we always have

$$
p(\boldsymbol{x}, y)=p(y) p(\boldsymbol{x} \mid y)
$$

We know how to estimate $p(y)$ by now.

To estimate $p(\boldsymbol{x} \mid y=c)$ for some $c \in[\mathrm{C}]$, we are doing density estimation using data $\left\{\boldsymbol{x}_{n}: y_{n}=c\right\}$.

Estimation

How to estimate a joint distribution? Observe we always have

$$
p(\boldsymbol{x}, y)=p(y) p(\boldsymbol{x} \mid y)
$$

We know how to estimate $p(y)$ by now.

To estimate $p(\boldsymbol{x} \mid y=c)$ for some $c \in[\mathrm{C}]$, we are doing density estimation using data $\left\{\boldsymbol{x}_{n}: y_{n}=c\right\}$.

This is not a 1D problem in general.

A "naive" assumption

Naive Bayes assumption:
conditioning on a label, features are independent,

A "naive" assumption

Naive Bayes assumption: conditioning on a label, features are independent, which means

$$
p(\boldsymbol{x} \mid y=c)=\prod_{d=1}^{\mathrm{D}} p\left(x_{d} \mid y=c\right)
$$

A "naive" assumption

Naive Bayes assumption:
conditioning on a label, features are independent, which means

$$
p(\boldsymbol{x} \mid y=c)=\prod_{d=1}^{\mathrm{D}} p\left(x_{d} \mid y=c\right)
$$

Now for each d and c we have a simple 1D density estimation problem!

A "naive" assumption

Naive Bayes assumption:
conditioning on a label, features are independent, which means

$$
p(\boldsymbol{x} \mid y=c)=\prod_{d=1}^{\mathrm{D}} p\left(x_{d} \mid y=c\right)
$$

Now for each d and c we have a simple 1D density estimation problem!
Is this a reasonable assumption?

A "naive" assumption

Naive Bayes assumption:
conditioning on a label, features are independent, which means

$$
p(\boldsymbol{x} \mid y=c)=\prod_{d=1}^{\mathrm{D}} p\left(x_{d} \mid y=c\right)
$$

Now for each d and c we have a simple 1D density estimation problem!
Is this a reasonable assumption? Sometimes yes, e.g.

- use $\boldsymbol{x}=$ (Height, Vocabulary) to predict $y=$ Age

A "naive" assumption

Naive Bayes assumption:
conditioning on a label, features are independent, which means

$$
p(\boldsymbol{x} \mid y=c)=\prod_{d=1}^{\mathrm{D}} p\left(x_{d} \mid y=c\right)
$$

Now for each d and c we have a simple 1D density estimation problem!
Is this a reasonable assumption? Sometimes yes, e.g.

- use $\boldsymbol{x}=$ (Height, Vocabulary) to predict $y=$ Age
- Height and Vocabulary are dependent

A "naive" assumption

Naive Bayes assumption:
conditioning on a label, features are independent, which means

$$
p(\boldsymbol{x} \mid y=c)=\prod_{d=1}^{\mathrm{D}} p\left(x_{d} \mid y=c\right)
$$

Now for each d and c we have a simple 1D density estimation problem!
Is this a reasonable assumption? Sometimes yes, e.g.

- use $\boldsymbol{x}=$ (Height, Vocabulary) to predict $y=$ Age
- Height and Vocabulary are dependent
- but condition on Age, they are independent!

A "naive" assumption

Naive Bayes assumption:
conditioning on a label, features are independent, which means

$$
p(\boldsymbol{x} \mid y=c)=\prod_{d=1}^{\mathrm{D}} p\left(x_{d} \mid y=c\right)
$$

Now for each d and c we have a simple 1D density estimation problem!
Is this a reasonable assumption? Sometimes yes, e.g.

- use $\boldsymbol{x}=$ (Height, Vocabulary) to predict $y=$ Age
- Height and Vocabulary are dependent
- but condition on Age, they are independent!

More often this assumption is unrealistic and "naive", but still Naive Bayes can work very well even if the assumption is wrong.

Example: discrete features

Height: $\leq 3^{\prime}, 3^{\prime}-4^{\prime}, 4^{\prime}-5^{\prime}, 5^{\prime}-6^{\prime}, \geq 6^{\prime}$
Vocabulary: $\leq 5 \mathrm{~K}, 5 \mathrm{~K}-10 \mathrm{~K}, 10 \mathrm{~K}-15 \mathrm{~K}, 15 \mathrm{~K}-20 \mathrm{~K}, \geq 20 \mathrm{~K}$ Age: $\leq 5,5-10,10-15,15-20,20-25, \geq 25$

Example: discrete features

Height: $\leq 3^{\prime}, 3^{\prime}-4^{\prime}, 4^{\prime}-5^{\prime}, 5^{\prime}-6^{\prime}, \geq 6^{\prime}$
Vocabulary: $\leq 5 \mathrm{~K}, 5 \mathrm{~K}-10 \mathrm{~K}, 10 \mathrm{~K}-15 \mathrm{~K}, 15 \mathrm{~K}-20 \mathrm{~K}, \geq 20 \mathrm{~K}$
Age: $\leq 5,5-10,10-15,15-20,20-25, \geq 25$

MLE estimation: e.g.

$$
p(\text { Age }=10-15)=\frac{\# \text { examples with age } 10-15}{\# \text { examples }}
$$

Example: discrete features

Height: $\leq 3^{\prime}, 3^{\prime}-4^{\prime}, 4^{\prime}-5^{\prime}, 5^{\prime}-6^{\prime}, \geq 6^{\prime}$
Vocabulary: $\leq 5 \mathrm{~K}, 5 \mathrm{~K}-10 \mathrm{~K}, 10 \mathrm{~K}-15 \mathrm{~K}, 15 \mathrm{~K}-20 \mathrm{~K}, \geq 20 \mathrm{~K}$
Age: $\leq 5,5-10,10-15,15-20,20-25, \geq 25$

MLE estimation: e.g.

$$
p(\text { Age }=10-15)=\frac{\# \text { examples with age } 10-15}{\# \text { examples }}
$$

$$
\begin{aligned}
& p\left(\text { Height }=5^{\prime}-6^{\prime} \mid \text { Age }=10-15\right) \\
& =\frac{\# \text { examples with height } 5^{\prime}-6^{\prime} \text { and age } 10-15}{\# \text { examples with age } 10-15}
\end{aligned}
$$

More formally

For a label $c \in[\mathrm{C}]$,

$$
p(y=c)=\frac{\left|\left\{n: y_{n}=c\right\}\right|}{N}
$$

More formally

For a label $c \in[\mathrm{C}]$,

$$
p(y=c)=\frac{\left|\left\{n: y_{n}=c\right\}\right|}{N}
$$

For each possible value k of a discrete feature d,

$$
p\left(x_{d}=k \mid y=c\right)=\frac{\left|\left\{n: x_{n d}=k, y_{n}=c\right\}\right|}{\left|\left\{n: y_{n}=c\right\}\right|}
$$

Continuous features

If the feature is continuous, we can do

- parametric estimation,
- or nonparametric estimation,

Continuous features

If the feature is continuous, we can do

- parametric estimation, e.g. via a Gaussian

$$
p\left(x_{d}=x \mid y=c\right)=\frac{1}{\sqrt{2 \pi} \sigma_{c d}} \exp \left(-\frac{\left(x-\mu_{c d}\right)^{2}}{2 \sigma_{c d}^{2}}\right)
$$

- or nonparametric estimation,

Continuous features

If the feature is continuous, we can do

- parametric estimation, e.g. via a Gaussian

$$
p\left(x_{d}=x \mid y=c\right)=\frac{1}{\sqrt{2 \pi} \sigma_{c d}} \exp \left(-\frac{\left(x-\mu_{c d}\right)^{2}}{2 \sigma_{c d}^{2}}\right)
$$

where $\mu_{c d}$ and $\sigma_{c d}^{2}$ are the empirical mean and variance of feature d among all examples with label c.

- or nonparametric estimation,

Continuous features

If the feature is continuous, we can do

- parametric estimation, e.g. via a Gaussian

$$
p\left(x_{d}=x \mid y=c\right)=\frac{1}{\sqrt{2 \pi} \sigma_{c d}} \exp \left(-\frac{\left(x-\mu_{c d}\right)^{2}}{2 \sigma_{c d}^{2}}\right)
$$

where $\mu_{c d}$ and $\sigma_{c d}^{2}$ are the empirical mean and variance of feature d among all examples with label c.

- or nonparametric estimation, e.g. via a Kernel K and bandwidth h :

$$
p\left(x_{d}=x \mid y=c\right)=\frac{1}{\left|\left\{n: y_{n}=c\right\}\right|} \sum_{n: y_{n}=c} K_{h}\left(x-x_{n d}\right)
$$

How to predict?

After learning the model

$$
p(\boldsymbol{x}, y)=p(y) \prod_{d=1}^{\mathrm{D}} p\left(x_{d} \mid y\right)
$$

How to predict?

After learning the model

$$
p(\boldsymbol{x}, y)=p(y) \prod_{d=1}^{\mathrm{D}} p\left(x_{d} \mid y\right)
$$

the prediction for a new example \boldsymbol{x} is

```
argmax }p(y=c|\boldsymbol{x}
    c\in[C]
```


How to predict?

After learning the model

$$
p(\boldsymbol{x}, y)=p(y) \prod_{d=1}^{\mathrm{D}} p\left(x_{d} \mid y\right)
$$

the prediction for a new example \boldsymbol{x} is

$$
\underset{c \in[\mathbf{C}]}{\operatorname{argmax}} p(y=c \mid \boldsymbol{x})=\underset{c \in[\mathbf{C}]}{\operatorname{argmax}} p(\boldsymbol{x}, y=c)
$$

How to predict?

After learning the model

$$
p(\boldsymbol{x}, y)=p(y) \prod_{d=1}^{\mathrm{D}} p\left(x_{d} \mid y\right)
$$

the prediction for a new example \boldsymbol{x} is

$$
\begin{aligned}
\underset{c \in[\mathrm{C}]}{\operatorname{argmax}} p(y=c \mid \boldsymbol{x}) & =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}} p(\boldsymbol{x}, y=c) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(p(y=c) \prod_{d=1}^{\mathrm{D}} p\left(x_{d} \mid y=c\right)\right)
\end{aligned}
$$

How to predict?

After learning the model

$$
p(\boldsymbol{x}, y)=p(y) \prod_{d=1}^{\mathrm{D}} p\left(x_{d} \mid y\right)
$$

the prediction for a new example \boldsymbol{x} is

$$
\begin{aligned}
\underset{c \in[C]}{\operatorname{argmax}} p(y=c \mid \boldsymbol{x}) & =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}} p(\boldsymbol{x}, y=c) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(p(y=c) \prod_{d=1}^{\mathrm{D}} p\left(x_{d} \mid y=c\right)\right) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln p(y=c)+\sum_{d=1}^{\mathrm{D}} \ln p\left(x_{d} \mid y=c\right)\right)
\end{aligned}
$$

Examples

For discrete features, plugging in previous MLE estimations gives

$$
\begin{aligned}
& \underset{c \in[\mathrm{C}]}{\operatorname{argmax}} p(y=c \mid \boldsymbol{x}) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln p(y=c)+\sum_{d=1}^{\mathrm{D}} \ln p\left(x_{d} \mid y=c\right)\right) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln \left|\left\{n: y_{n}=c\right\}\right|+\sum_{d=1}^{\mathrm{D}} \ln \frac{\left|\left\{n: x_{n d}=x_{d}, y_{n}=c\right\}\right|}{\left|\left\{n: y_{n}=c\right\}\right|}\right)
\end{aligned}
$$

Examples

For continuous features with a Gaussian model,

$$
\begin{aligned}
& \underset{c \in[\mathrm{C}]}{\operatorname{argmax}} p(y=c \mid \boldsymbol{x}) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln p(y=c)+\sum_{d=1}^{\mathrm{D}} \ln p\left(x_{d} \mid y=c\right)\right) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln \left|\left\{n: y_{n}=c\right\}\right|+\sum_{d=1}^{\mathrm{D}} \ln \left(\frac{1}{\sqrt{2 \pi} \sigma_{c d}} \exp \left(-\frac{\left(x_{d}-\mu_{c d}\right)^{2}}{2 \sigma_{c d}^{2}}\right)\right)\right)
\end{aligned}
$$

Examples

For continuous features with a Gaussian model,

$$
\begin{aligned}
& \underset{c \in[\mathrm{C}]}{\operatorname{argmax}} p(y=c \mid \boldsymbol{x}) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln p(y=c)+\sum_{d=1}^{\mathrm{D}} \ln p\left(x_{d} \mid y=c\right)\right) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln \left|\left\{n: y_{n}=c\right\}\right|+\sum_{d=1}^{\mathrm{D}} \ln \left(\frac{1}{\sqrt{2 \pi} \sigma_{c d}} \exp \left(-\frac{\left(x_{d}-\mu_{c d}\right)^{2}}{2 \sigma_{c d}^{2}}\right)\right)\right) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln \left|\left\{n: y_{n}=c\right\}\right|-\sum_{d=1}^{\mathrm{D}}\left(\ln \sigma_{c d}+\frac{\left(x_{d}-\mu_{c d}\right)^{2}}{2 \sigma_{c d}^{2}}\right)\right)
\end{aligned}
$$

Examples

For continuous features with a Gaussian model,

$$
\begin{aligned}
& \underset{c \in[\mathrm{C}]}{\operatorname{argmax}} p(y=c \mid \boldsymbol{x}) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln p(y=c)+\sum_{d=1}^{\mathrm{D}} \ln p\left(x_{d} \mid y=c\right)\right) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln \left|\left\{n: y_{n}=c\right\}\right|+\sum_{d=1}^{\mathrm{D}} \ln \left(\frac{1}{\sqrt{2 \pi} \sigma_{c d}} \exp \left(-\frac{\left(x_{d}-\mu_{c d}\right)^{2}}{2 \sigma_{c d}^{2}}\right)\right)\right) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln \left|\left\{n: y_{n}=c\right\}\right|-\sum_{d=1}^{\mathrm{D}}\left(\ln \sigma_{c d}+\frac{\left(x_{d}-\mu_{c d}\right)^{2}}{2 \sigma_{c d}^{2}}\right)\right)
\end{aligned}
$$

which is quadratic in the feature \boldsymbol{x}.

What naive Bayes is learning?

Observe again for the case of continuous features with a Gaussian model, if we fix the variance for each feature to be σ (i.e. not a parameter of the model any more), then the prediction becomes

$$
\begin{aligned}
& \underset{c \in[\mathrm{C}]}{\operatorname{argmax}} p(y=c \mid \boldsymbol{x}) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln \left|\left\{n: y_{n}=c\right\}\right|-\sum_{d=1}^{\mathrm{D}}\left(\ln \sigma+\frac{\left(x_{d}-\mu_{c d}\right)^{2}}{2 \sigma^{2}}\right)\right)
\end{aligned}
$$

What naive Bayes is learning?

Observe again for the case of continuous features with a Gaussian model, if we fix the variance for each feature to be σ (i.e. not a parameter of the model any more), then the prediction becomes

$$
\begin{aligned}
& \underset{c \in[\mathrm{C}]}{\operatorname{argmax}} p(y=c \mid \boldsymbol{x}) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln \left|\left\{n: y_{n}=c\right\}\right|-\sum_{d=1}^{\mathrm{D}}\left(\ln \sigma+\frac{\left(x_{d}-\mu_{c d}\right)^{2}}{2 \sigma^{2}}\right)\right) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln \left|\left\{n: y_{n}=c\right\}\right|-\sum_{d=1}^{\mathrm{D}} \frac{\mu_{c d}^{2}}{2 \sigma^{2}}+\sum_{d=1}^{\mathrm{D}} \frac{\mu_{c d}}{\sigma^{2}} x_{d}\right)
\end{aligned}
$$

What naive Bayes is learning?

Observe again for the case of continuous features with a Gaussian model, if we fix the variance for each feature to be σ (i.e. not a parameter of the model any more), then the prediction becomes

$$
\begin{aligned}
& \underset{c \in[\mathrm{C}]}{\operatorname{argmax}} p(y=c \mid \boldsymbol{x}) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln \left|\left\{n: y_{n}=c\right\}\right|-\sum_{d=1}^{\mathrm{D}}\left(\ln \sigma+\frac{\left(x_{d}-\mu_{c d}\right)^{2}}{2 \sigma^{2}}\right)\right) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln \left|\left\{n: y_{n}=c\right\}\right|-\sum_{d=1}^{\mathrm{D}} \frac{\mu_{c d}^{2}}{2 \sigma^{2}}+\sum_{d=1}^{\mathrm{D}} \frac{\mu_{c d}}{\sigma^{2}} x_{d}\right) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(w_{c 0}+\sum_{d=1}^{\mathrm{D}} w_{c d} x_{d}\right)
\end{aligned}
$$

where we denote $w_{c 0}=\ln \left|\left\{n: y_{n}=c\right\}\right|-\sum_{d=1}^{\mathrm{D}} \frac{\mu_{c d}^{2}}{2 \sigma^{2}}$ and $w_{c d}=\frac{\mu_{c d}}{\sigma^{2}}$.

What naive Bayes is learning?

Observe again for the case of continuous features with a Gaussian model, if we fix the variance for each feature to be σ (i.e. not a parameter of the model any more), then the prediction becomes

$$
\begin{aligned}
& \underset{c \in[\mathrm{C}]}{\operatorname{argmax}} p(y=c \mid \boldsymbol{x}) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln \left|\left\{n: y_{n}=c\right\}\right|-\sum_{d=1}^{\mathrm{D}}\left(\ln \sigma+\frac{\left(x_{d}-\mu_{c d}\right)^{2}}{2 \sigma^{2}}\right)\right) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(\ln \left|\left\{n: y_{n}=c\right\}\right|-\sum_{d=1}^{\mathrm{D}} \frac{\mu_{c d}^{2}}{2 \sigma^{2}}+\sum_{d=1}^{\mathrm{D}} \frac{\mu_{c d}}{\sigma^{2}} x_{d}\right) \\
& =\underset{c \in[\mathrm{C}]}{\operatorname{argmax}}\left(w_{c 0}+\sum_{d=1}^{\mathrm{D}} w_{c d} x_{d}\right)=\underset{c \in[\mathrm{C}]}{\operatorname{argmax}} \boldsymbol{w}_{c}^{\mathrm{T}} \boldsymbol{x} \quad \text { (linear classifier!) }
\end{aligned}
$$

where we denote $w_{c 0}=\ln \left|\left\{n: y_{n}=c\right\}\right|-\sum_{d=1}^{\mathrm{D}} \frac{\mu_{c d}^{2}}{2 \sigma^{2}}$ and $w_{c d}=\frac{\mu_{c d}}{\sigma^{2}}$.

Connection to logistic regression

Moreover by similar calculation one can verify

$$
p(y=c \mid \boldsymbol{x}) \propto e^{\boldsymbol{w}_{c}^{\mathrm{T}} \boldsymbol{x}}
$$

Connection to logistic regression

Moreover by similar calculation one can verify

$$
p(y=c \mid \boldsymbol{x}) \propto e^{\boldsymbol{w}_{c}^{\mathrm{T}} \boldsymbol{x}}
$$

This is exactly the softmax function, the same model we used for the probabilistic interpretation of logistic regression!

Connection to logistic regression

Moreover by similar calculation one can verify

$$
p(y=c \mid \boldsymbol{x}) \propto e^{\boldsymbol{w}_{c}^{\mathrm{T}} \boldsymbol{x}}
$$

This is exactly the softmax function, the same model we used for the probabilistic interpretation of logistic regression!

So what is different then?

Connection to logistic regression

Moreover by similar calculation one can verify

$$
p(y=c \mid \boldsymbol{x}) \propto e^{\boldsymbol{w}_{c}^{\mathrm{T}} \boldsymbol{x}}
$$

This is exactly the softmax function, the same model we used for the probabilistic interpretation of logistic regression!

So what is different then? They learn the parameters in different ways:

Connection to logistic regression

Moreover by similar calculation one can verify

$$
p(y=c \mid \boldsymbol{x}) \propto e^{\boldsymbol{w}_{c}^{\mathrm{T}} \boldsymbol{x}}
$$

This is exactly the softmax function, the same model we used for the probabilistic interpretation of logistic regression!

So what is different then? They learn the parameters in different ways:

- both via MLE, one on $p(y=c \mid \boldsymbol{x})$, the other on $p(\boldsymbol{x}, y)$

Connection to logistic regression

Moreover by similar calculation one can verify

$$
p(y=c \mid \boldsymbol{x}) \propto e^{\boldsymbol{w}_{c}^{\mathrm{T}} \boldsymbol{x}}
$$

This is exactly the softmax function, the same model we used for the probabilistic interpretation of logistic regression!

So what is different then? They learn the parameters in different ways:

- both via MLE, one on $p(y=c \mid \boldsymbol{x})$, the other on $p(\boldsymbol{x}, y)$
- solutions are different: logistic regression has no closed-form, naive Bayes admits a simple closed-form

Generative model v.s discriminative model

	Discriminative model	Generative model
Example	logistic regression	naive Bayes

Generative model v.s discriminative model

	Discriminative model	Generative model
Example	logistic regression	naive Bayes
Model	conditional $p(y \mid \boldsymbol{x})$	joint $p(\boldsymbol{x}, y)$ (might have same $p(y \mid \boldsymbol{x})$)

Generative model v.s discriminative model

	Discriminative model	Generative model
Example	logistic regression	naive Bayes
Model	conditional $p(y \mid \boldsymbol{x})$	joint $p(\boldsymbol{x}, y)$ (might have same $p(y \mid \boldsymbol{x})$)
Learning	MLE	MLE

Generative model v.s discriminative model

	Discriminative model	Generative model
Example	logistic regression	naive Bayes
Model	conditional $p(y \mid \boldsymbol{x})$	joint $p(\boldsymbol{x}, y)$ (might have same $p(y \mid \boldsymbol{x})$)
Learning	MLE	MLE
Accuracy	usually better for large N	usually better for small N

Generative model v.s discriminative model

	Discriminative model	Generative model
Example	logistic regression	naive Bayes
Model	conditional $p(y \mid \boldsymbol{x})$	joint $p(\boldsymbol{x}, y)$ (might have same $p(y \mid \boldsymbol{x})$)
Learning	MLE	MLE
Accuracy	usually better for large N	usually better for small N
Remark		more flexible, can generate data after learning

Outline

(1) Review of last lecture

(2) Density estimation
(3) Naive Bayes
4) Principal Component Analysis (PCA)

- PCA
- Kernel PCA

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning problem.

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning problem.

Goal: reduce the dimensionality of a dataset so

- it is easier to visualize and discover patterns

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning problem.

Goal: reduce the dimensionality of a dataset so

- it is easier to visualize and discover patterns
- it takes less time and space to process for any applications (classification, regression, clustering, etc)

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning problem.

Goal: reduce the dimensionality of a dataset so

- it is easier to visualize and discover patterns
- it takes less time and space to process for any applications (classification, regression, clustering, etc)
- noise is reduced
- . .

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning problem.

Goal: reduce the dimensionality of a dataset so

- it is easier to visualize and discover patterns
- it takes less time and space to process for any applications (classification, regression, clustering, etc)
- noise is reduced
- ..

There are many approaches, we focus on a linear method: Principal Component Analysis (PCA)

Example

Consider the following dataset:

- 17 features, each represents the average consumption of some food

Example

Consider the following dataset:

- 17 features, each represents the average consumption of some food
- 4 data boints. each rebresents some country

```
Alcoholic drinks
Beverages
Carcase meat
Cereals
Cheese
Confectionery
Fats and oils
Fish
Fresh fruit
Fresh potatoes
Fresh Veg
Other meat
Other Veg
Processed potatoes
Processed Veg
Soft drinks
Sugars
```


Example

Consider the following dataset:

- 17 features, each represents the average consumption of some food
- 4 data boints. each rebresents some country

```
Alcoholic drinks
Beverages
Carcase meat
Cereals
Cheese
Confectionery
Fats and oils
Fish
Fresh fruit
Fresh potatoes
Fresh Veg
Other meat
Other Veg
Processed potatoes
Processed Veg
Soft drinks
Sugars
```


What can you tell?

Example

Consider the following dataset:

- 17 features, each represents the average consumption of some food
- 4 data boints. each rebresents some country

What can you tell?
Hard to say anything looking at all these 17 features.

Example

PCA can help us!

Example

PCA can help us! The first principal component of this dataset:

i.e. we reduce the dimensionality from 17 to just 1.

Example

PCA can help us! The first principal component of this dataset:

i.e. we reduce the dimensionality from 17 to just 1.

Now one data point is clearly different from the rest!

Example

PCA can help us! The first principal component of this dataset:

i.e. we reduce the dimensionality from 17 to just 1.

Now one data point is clearly different from the rest!
That turns out to be data from Northern Ireland, the only country not on the island of Great Britain out of the 4 samples.

Example

PCA can find the second (and more) principal component of the data too:

High level idea

How does PCA find these principal components (P ()?

High level idea

How does PCA find these principal components (PC)?

The first PC is in fact the direction with the most variance, i.e. the direction where the data is most spread out.

Finding the first PC

More formally, we want to find a direction $\boldsymbol{v} \in \mathbb{R}^{\mathrm{D}}$ with $\|\boldsymbol{v}\|_{2}=1$, so that the projection of the dataset on this direction has the most variance,

Finding the first PC

More formally, we want to find a direction $\boldsymbol{v} \in \mathbb{R}^{\mathrm{D}}$ with $\|\boldsymbol{v}\|_{2}=1$, so that the projection of the dataset on this direction has the most variance, i.e.

$$
\max _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \sum_{n=1}^{N}\left(\boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{v}-\frac{1}{N} \sum_{m} \boldsymbol{x}_{m}^{\mathrm{T}} \boldsymbol{v}\right)^{2}
$$

Finding the first PC

More formally, we want to find a direction $\boldsymbol{v} \in \mathbb{R}^{\mathrm{D}}$ with $\|\boldsymbol{v}\|_{2}=1$, so that the projection of the dataset on this direction has the most variance, i.e.

$$
\max _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \sum_{n=1}^{N}\left(\boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{v}-\frac{1}{N} \sum_{m} \boldsymbol{x}_{m}^{\mathrm{T}} \boldsymbol{v}\right)^{2}
$$

- $\boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{v}$ is exactly the projection of \boldsymbol{x}_{n} onto the direction \boldsymbol{v}

Finding the first PC

More formally, we want to find a direction $\boldsymbol{v} \in \mathbb{R}^{\mathrm{D}}$ with $\|\boldsymbol{v}\|_{2}=1$, so that the projection of the dataset on this direction has the most variance, i.e.

$$
\max _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \sum_{n=1}^{N}\left(\boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{v}-\frac{1}{N} \sum_{m} \boldsymbol{x}_{m}^{\mathrm{T}} \boldsymbol{v}\right)^{2}
$$

- $\boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{v}$ is exactly the projection of \boldsymbol{x}_{n} onto the direction \boldsymbol{v}
- if we pre-center the data, i.e. let $\boldsymbol{x}_{n}^{\prime}=\boldsymbol{x}_{n}-\frac{1}{N} \sum_{m} \boldsymbol{x}_{m}$, then the objective simply becomes

$$
\max _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \sum_{n=1}^{N}\left(\boldsymbol{x}_{n}^{\prime \mathrm{T}} \boldsymbol{v}\right)^{2}
$$

Finding the first PC

More formally, we want to find a direction $\boldsymbol{v} \in \mathbb{R}^{\mathrm{D}}$ with $\|\boldsymbol{v}\|_{2}=1$, so that the projection of the dataset on this direction has the most variance, i.e.

$$
\max _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \sum_{n=1}^{N}\left(\boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{v}-\frac{1}{N} \sum_{m} \boldsymbol{x}_{m}^{\mathrm{T}} \boldsymbol{v}\right)^{2}
$$

- $\boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{v}$ is exactly the projection of \boldsymbol{x}_{n} onto the direction \boldsymbol{v}
- if we pre-center the data, i.e. let $\boldsymbol{x}_{n}^{\prime}=\boldsymbol{x}_{n}-\frac{1}{N} \sum_{m} \boldsymbol{x}_{m}$, then the objective simply becomes

$$
\max _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \sum_{n=1}^{N}\left(\boldsymbol{x}_{n}^{\prime \mathrm{T}} \boldsymbol{v}\right)^{2}=\max _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \boldsymbol{v}^{\mathrm{T}}\left(\sum_{n=1}^{N} \boldsymbol{x}_{n}^{\prime} \boldsymbol{x}_{n}^{\prime \mathrm{T}}\right) \boldsymbol{v}
$$

Finding the first PC

More formally, we want to find a direction $\boldsymbol{v} \in \mathbb{R}^{\mathrm{D}}$ with $\|\boldsymbol{v}\|_{2}=1$, so that the projection of the dataset on this direction has the most variance, i.e.

$$
\max _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \sum_{n=1}^{N}\left(\boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{v}-\frac{1}{N} \sum_{m} \boldsymbol{x}_{m}^{\mathrm{T}} \boldsymbol{v}\right)^{2}
$$

- $\boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{v}$ is exactly the projection of \boldsymbol{x}_{n} onto the direction \boldsymbol{v}
- if we pre-center the data, i.e. let $\boldsymbol{x}_{n}^{\prime}=\boldsymbol{x}_{n}-\frac{1}{N} \sum_{m} \boldsymbol{x}_{m}$, then the objective simply becomes

$$
\max _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \sum_{n=1}^{N}\left(\boldsymbol{x}_{n}^{\prime \mathrm{T}} \boldsymbol{v}\right)^{2}=\max _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \boldsymbol{v}^{\mathrm{T}}\left(\sum_{n=1}^{N} \boldsymbol{x}_{n}^{\prime} \boldsymbol{x}_{n}^{\prime \mathrm{T}}\right) \boldsymbol{v}
$$

- we will simply assume $\left\{\boldsymbol{x}_{n}\right\}$ is centered (to avoid notation $\boldsymbol{x}_{n}^{\prime}$)

Finding the first PC

With $\boldsymbol{X} \in \mathbb{R}^{N \times \mathrm{D}}$ being the data matrix (as in Lec 2), we want

$$
\max _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}
$$

Finding the first PC

With $\boldsymbol{X} \in \mathbb{R}^{N \times \mathrm{D}}$ being the data matrix (as in Lec 2), we want

$$
\max _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}
$$

The Lagrangian is

$$
\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}-\lambda\left(\|\boldsymbol{v}\|_{2}^{2}-1\right)
$$

Finding the first PC

With $\boldsymbol{X} \in \mathbb{R}^{N \times \mathrm{D}}$ being the data matrix (as in Lec 2), we want

$$
\max _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}
$$

The Lagrangian is

$$
\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}-\lambda\left(\|\boldsymbol{v}\|_{2}^{2}-1\right)
$$

The stationary condition implies $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{v}=\lambda \boldsymbol{v}$,

Finding the first PC

With $\boldsymbol{X} \in \mathbb{R}^{N \times \mathrm{D}}$ being the data matrix (as in Lec 2), we want

$$
\max _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}
$$

The Lagrangian is

$$
\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}-\lambda\left(\|\boldsymbol{v}\|_{2}^{2}-1\right)
$$

The stationary condition implies $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{v}=\lambda \boldsymbol{v}$, which means v is exactly an eigenvector!

Finding the first PC

With $\boldsymbol{X} \in \mathbb{R}^{N \times \mathrm{D}}$ being the data matrix (as in Lec 2), we want

$$
\max _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}
$$

The Lagrangian is

$$
\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}-\lambda\left(\|\boldsymbol{v}\|_{2}^{2}-1\right)
$$

The stationary condition implies $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{v}=\lambda \boldsymbol{v}$, which means v is exactly an eigenvector! And the objective becomes

$$
\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}=\lambda \boldsymbol{v}^{\mathrm{T}} \boldsymbol{v}=\lambda
$$

Finding the first PC

With $\boldsymbol{X} \in \mathbb{R}^{N \times \mathrm{D}}$ being the data matrix (as in Lec 2), we want

$$
\max _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}
$$

The Lagrangian is

$$
\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}-\lambda\left(\|\boldsymbol{v}\|_{2}^{2}-1\right)
$$

The stationary condition implies $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{v}=\lambda \boldsymbol{v}$, which means v is exactly an eigenvector! And the objective becomes

$$
\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}=\lambda \boldsymbol{v}^{\mathrm{T}} \boldsymbol{v}=\lambda
$$

To maximize this, we want the eigenvector with the largest eigenvalue

Finding the first PC

With $\boldsymbol{X} \in \mathbb{R}^{N \times \mathrm{D}}$ being the data matrix (as in Lec 2), we want

$$
\max _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}
$$

The Lagrangian is

$$
\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}-\lambda\left(\|\boldsymbol{v}\|_{2}^{2}-1\right)
$$

The stationary condition implies $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{v}=\lambda \boldsymbol{v}$, which means v is exactly an eigenvector! And the objective becomes

$$
\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}=\lambda \boldsymbol{v}^{\mathrm{T}} \boldsymbol{v}=\lambda
$$

To maximize this, we want the eigenvector with the largest eigenvalue
Conclusion: the first PC is the top eigenvector of the covariance matrix

Finding the other PCs

If v_{1} is the first PC , then the second PC is found via

$$
\max _{\boldsymbol{v}_{2}:\left\|\boldsymbol{v}_{2}\right\|_{2}=1, \boldsymbol{v}_{1}^{\mathrm{T}} \boldsymbol{v}_{2}=0} \boldsymbol{v}_{2}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}_{2}
$$

i.e. the direction that maximizes the variance among all other dimensions

Finding the other PCs

If v_{1} is the first PC , then the second PC is found via

$$
\max _{\boldsymbol{v}_{2}:\left\|\boldsymbol{v}_{2}\right\|_{2}=1, \boldsymbol{v}_{1}^{\mathrm{T}} \boldsymbol{v}_{2}=0} \boldsymbol{v}_{2}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}_{2}
$$

i.e. the direction that maximizes the variance among all other dimensions

This is just the second top eigenvector of the covariance matrix!

Finding the other PCs

If v_{1} is the first PC , then the second PC is found via

$$
\max _{\boldsymbol{v}_{2}:\left\|\boldsymbol{v}_{2}\right\|_{2}=1, \boldsymbol{v}_{1}^{\mathrm{T}} \boldsymbol{v}_{2}=0} \boldsymbol{v}_{2}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{v}_{2}
$$

i.e. the direction that maximizes the variance among all other dimensions

This is just the second top eigenvector of the covariance matrix!

Conclusion: the d-th principal component is the d-th eigenvector (sorted by the eigenvalue from largest to smallest).

PCA

Input: a dataset represented as \boldsymbol{X}, \#components p we want

PCA

Input: a dataset represented as \boldsymbol{X}, \#components p we want

Step 1 Center the data by subtracting the mean

PCA

Input: a dataset represented as \boldsymbol{X}, \#components p we want

Step 1 Center the data by subtracting the mean

Step 2 Find the top p eigenvectors (with unit norm) of the covariance matrix $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$, denoted by $\boldsymbol{V} \in \mathbb{R}^{\mathrm{D} \times p}$

PCA

Input: a dataset represented as \boldsymbol{X}, \#components p we want

Step 1 Center the data by subtracting the mean

Step 2 Find the top p eigenvectors (with unit norm) of the covariance matrix $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$, denoted by $\boldsymbol{V} \in \mathbb{R}^{\mathrm{D} \times p}$

Step 3 Construct the new compressed dataset $\boldsymbol{X} \boldsymbol{V} \in \mathbb{R}^{N \times p}$

How many PCs do we want?

One common rule: pick p large enough so it covers about 90% of the spectrum,

How many PCs do we want?

One common rule: pick p large enough so it covers about 90% of the spectrum, i.e.

$$
\frac{\sum_{d=1}^{p} \lambda_{d}}{\sum_{d=1}^{\mathrm{D}} \lambda_{d}} \geq 90 \%
$$

where $\lambda_{1} \geq \cdots \geq \lambda_{N}$ are sorted eigenvalues.

How many PCs do we want?

One common rule: pick p large enough so it covers about 90% of the spectrum, i.e.

$$
\frac{\sum_{d=1}^{p} \lambda_{d}}{\sum_{d=1}^{\mathrm{D}} \lambda_{d}} \geq 90 \%
$$

where $\lambda_{1} \geq \cdots \geq \lambda_{N}$ are sorted eigenvalues.

Note: $\sum_{d=1}^{\mathrm{D}} \lambda_{d}=\operatorname{Tr}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)$, so no need to actually find all eigenvalues.

How many PCs do we want?

One common rule: pick p large enough so it covers about 90% of the spectrum, i.e.

$$
\frac{\sum_{d=1}^{p} \lambda_{d}}{\sum_{d=1}^{\mathrm{D}} \lambda_{d}} \geq 90 \%
$$

where $\lambda_{1} \geq \cdots \geq \lambda_{N}$ are sorted eigenvalues.

Note: $\sum_{d=1}^{\mathrm{D}} \lambda_{d}=\operatorname{Tr}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)$, so no need to actually find all eigenvalues.

For visualization, also often pick $p=1$ or $p=2$.

Another visualization example

A famous study of genetic map

- dataset: genomes of 1,387 Europeans

Another visualization example

A famous study of genetic map

- dataset: genomes of 1,387 Europeans
- First 2 PCs shown below;

Another visualization example

A famous study of genetic map

- dataset: genomes of 1,387 Europeans
- First 2 PCs shown below; looks remarkably like the geographic map

Does PCA always work?
PCA is a linear method (recall the new dataset is $\boldsymbol{X} \boldsymbol{V}$),

Does PCA always work?

PCA is a linear method (recall the new dataset is $\boldsymbol{X} \boldsymbol{V}$), it does not do much when every direction has similar variance.

KPCA: high level idea

Similar to learning a linear classifier, when we encounter such data, we can apply kernel methods.

KPCA: high level idea

Similar to learning a linear classifier, when we encounter such data, we can apply kernel methods.

Kernel PCA (KPCA):

- first map the data to a more complicated space via $\phi: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}^{M}$

KPCA: high level idea

Similar to learning a linear classifier, when we encounter such data, we can apply kernel methods.

Kernel PCA (KPCA):

- first map the data to a more complicated space via $\phi: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}^{M}$
- then apply regular PCA to reduce the dimensionality

KPCA: high level idea

Similar to learning a linear classifier, when we encounter such data, we can apply kernel methods.

Kernel PCA (KPCA):

- first map the data to a more complicated space via $\phi: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}^{M}$
- then apply regular PCA to reduce the dimensionality

Sounds a bit counter-intuitive, but the key is this gives a nonlinear method.

KPCA: high level idea

Similar to learning a linear classifier, when we encounter such data, we can apply kernel methods.

Kernel PCA (KPCA):

- first map the data to a more complicated space via $\phi: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}^{M}$
- then apply regular PCA to reduce the dimensionality

Sounds a bit counter-intuitive, but the key is this gives a nonlinear method.

How to implement KPCA efficiently without actually working in \mathbb{R}^{M} ?

KPCA: finding the PCs

Suppose $\boldsymbol{v} \in \mathbb{R}^{M}$ is the first PC for the nonlinearly-transformed data $\Phi \in \mathbb{R}^{N \times M}$ (centered).

KPCA: finding the PCs

Suppose $\boldsymbol{v} \in \mathbb{R}^{M}$ is the first PC for the nonlinearly-transformed data $\Phi \in \mathbb{R}^{N \times M}$ (centered). Then

$$
\boldsymbol{v}=\frac{1}{\lambda} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{v}
$$

KPCA: finding the PCs

Suppose $\boldsymbol{v} \in \mathbb{R}^{M}$ is the first PC for the nonlinearly-transformed data $\Phi \in \mathbb{R}^{N \times M}$ (centered). Then

$$
\boldsymbol{v}=\frac{1}{\lambda} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{v}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}
$$

for some $\boldsymbol{\alpha} \in \mathbb{R}^{N}$,

KPCA: finding the PCs

Suppose $\boldsymbol{v} \in \mathbb{R}^{M}$ is the first PC for the nonlinearly-transformed data $\Phi \in \mathbb{R}^{N \times M}$ (centered). Then

$$
\boldsymbol{v}=\frac{1}{\lambda} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{v}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}
$$

for some $\boldsymbol{\alpha} \in \mathbb{R}^{N}$, i.e. it's a linear combination of data.

KPCA: finding the PCs

Suppose $\boldsymbol{v} \in \mathbb{R}^{M}$ is the first PC for the nonlinearly-transformed data $\Phi \in \mathbb{R}^{N \times M}$ (centered). Then

$$
\boldsymbol{v}=\frac{1}{\lambda} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{v}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}
$$

for some $\boldsymbol{\alpha} \in \mathbb{R}^{N}$, i.e. it's a linear combination of data.
Plugging into $\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{v}=\lambda \boldsymbol{v}$ gives

$$
\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}=\lambda \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}
$$

KPCA: finding the PCs

Suppose $\boldsymbol{v} \in \mathbb{R}^{M}$ is the first PC for the nonlinearly-transformed data $\Phi \in \mathbb{R}^{N \times M}$ (centered). Then

$$
\boldsymbol{v}=\frac{1}{\lambda} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{v}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}
$$

for some $\boldsymbol{\alpha} \in \mathbb{R}^{N}$, i.e. it's a linear combination of data.
Plugging into $\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{v}=\lambda \boldsymbol{v}$ gives

$$
\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}=\lambda \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}
$$

and thus with the Gram matrix $\boldsymbol{K}=\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}$,

$$
\boldsymbol{\Phi}^{\mathrm{T}}(\boldsymbol{K} \boldsymbol{\alpha}-\lambda \boldsymbol{\alpha})=0
$$

KPCA: finding the PCs

Suppose $\boldsymbol{v} \in \mathbb{R}^{M}$ is the first PC for the nonlinearly-transformed data $\Phi \in \mathbb{R}^{N \times M}$ (centered). Then

$$
\boldsymbol{v}=\frac{1}{\lambda} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{v}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}
$$

for some $\boldsymbol{\alpha} \in \mathbb{R}^{N}$, i.e. it's a linear combination of data.
Plugging into $\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{v}=\lambda \boldsymbol{v}$ gives

$$
\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}=\lambda \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}
$$

and thus with the Gram matrix $\boldsymbol{K}=\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}$,

$$
\boldsymbol{\Phi}^{\mathrm{T}}(\boldsymbol{K} \boldsymbol{\alpha}-\lambda \boldsymbol{\alpha})=0
$$

So $\boldsymbol{\alpha}$ is an eigenvector of \boldsymbol{K} with the same eigenvalue λ !

KPCA: finding the PCs

Suppose $\boldsymbol{v} \in \mathbb{R}^{M}$ is the first PC for the nonlinearly-transformed data $\Phi \in \mathbb{R}^{N \times M}$ (centered). Then

$$
\boldsymbol{v}=\frac{1}{\lambda} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{v}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}
$$

for some $\boldsymbol{\alpha} \in \mathbb{R}^{N}$, i.e. it's a linear combination of data.
Plugging into $\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{v}=\lambda \boldsymbol{v}$ gives

$$
\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}=\lambda \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}
$$

and thus with the Gram matrix $\boldsymbol{K}=\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}$,

$$
\boldsymbol{\Phi}^{\mathrm{T}}(\boldsymbol{K} \boldsymbol{\alpha}-\lambda \boldsymbol{\alpha})=0
$$

So $\boldsymbol{\alpha}$ is an eigenvector of \boldsymbol{K} with the same eigenvalue λ !
Conclusion: KPCA is just finding top eigenvectors of the Gram matrix

One issue: scaling

Should we scale $\boldsymbol{\alpha}$ s.t $\|\boldsymbol{\alpha}\|_{2}=1$?

One issue: scaling

Should we scale $\boldsymbol{\alpha}$ s.t $\|\boldsymbol{\alpha}\|_{2}=1$?

No. Recall we want $\boldsymbol{v}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}$ to have unit L 2 norm,

One issue: scaling

Should we scale $\boldsymbol{\alpha}$ s.t $\|\boldsymbol{\alpha}\|_{2}=1$?

No. Recall we want $\boldsymbol{v}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}$ to have unit L 2 norm, so

$$
\boldsymbol{v}^{\mathrm{T}} \boldsymbol{v}=\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}=\lambda\|\boldsymbol{\alpha}\|_{2}^{2}=1
$$

One issue: scaling

Should we scale $\boldsymbol{\alpha}$ s.t $\|\boldsymbol{\alpha}\|_{2}=1$?

No. Recall we want $\boldsymbol{v}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}$ to have unit L2 norm, so

$$
\boldsymbol{v}^{\mathrm{T}} \boldsymbol{v}=\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}=\lambda\|\boldsymbol{\alpha}\|_{2}^{2}=1
$$

In other words, we in fact need to scale $\boldsymbol{\alpha}$ so that its L2 norm is $1 / \sqrt{\lambda}$, where λ it's the corresponding eigenvalue.

Another issue: centering

Should we still pre-center \boldsymbol{X} ?

Another issue: centering

Should we still pre-center \boldsymbol{X} ?

No. Centering \boldsymbol{X} does not mean $\boldsymbol{\Phi}$ is centered!

Another issue: centering

Should we still pre-center \boldsymbol{X} ?

No. Centering \boldsymbol{X} does not mean $\boldsymbol{\Phi}$ is centered!

Remember all we need is Gram matrix. What is the Gram matrix after $\mathbf{\Phi}$ is centered?

Another issue: centering

Should we still pre-center \boldsymbol{X} ?

No. Centering \boldsymbol{X} does not mean $\boldsymbol{\Phi}$ is centered!

Remember all we need is Gram matrix. What is the Gram matrix after $\mathbf{\Phi}$ is centered?

Let $\boldsymbol{E} \in \mathbb{R}^{N \times N}$ be the matrix with all entries being $\frac{1}{N}$,

Another issue: centering

Should we still pre-center \boldsymbol{X} ?

No. Centering \boldsymbol{X} does not mean $\boldsymbol{\Phi}$ is centered!

Remember all we need is Gram matrix. What is the Gram matrix after $\mathbf{\Phi}$ is centered?

Let $\boldsymbol{E} \in \mathbb{R}^{N \times N}$ be the matrix with all entries being $\frac{1}{N}$,

$$
\overline{\boldsymbol{K}}=\overline{\boldsymbol{\Phi}} \overline{\boldsymbol{\Phi}}^{\mathrm{T}}
$$

$$
(\bar{\Phi}=\Phi-E \Phi)
$$

Another issue: centering

Should we still pre-center \boldsymbol{X} ?

No. Centering \boldsymbol{X} does not mean $\boldsymbol{\Phi}$ is centered!

Remember all we need is Gram matrix. What is the Gram matrix after $\mathbf{\Phi}$ is centered?

Let $\boldsymbol{E} \in \mathbb{R}^{N \times N}$ be the matrix with all entries being $\frac{1}{N}$,

$$
\begin{aligned}
\overline{\boldsymbol{K}} & =\overline{\boldsymbol{\Phi}} \overline{\boldsymbol{\Phi}}^{\mathrm{T}} & (\overline{\boldsymbol{\Phi}}=\boldsymbol{\Phi}-\boldsymbol{E} \boldsymbol{\Phi}) \\
& =(\boldsymbol{\Phi}-\boldsymbol{E} \boldsymbol{\Phi})(\boldsymbol{\Phi}-\boldsymbol{E} \boldsymbol{\Phi})^{\mathrm{T}} &
\end{aligned}
$$

Another issue: centering

Should we still pre-center \boldsymbol{X} ?

No. Centering \boldsymbol{X} does not mean $\boldsymbol{\Phi}$ is centered!

Remember all we need is Gram matrix. What is the Gram matrix after $\mathbf{\Phi}$ is centered?

Let $\boldsymbol{E} \in \mathbb{R}^{N \times N}$ be the matrix with all entries being $\frac{1}{N}$,

$$
\begin{aligned}
\overline{\boldsymbol{K}} & =\overline{\boldsymbol{\Phi}} \overline{\boldsymbol{\Phi}}^{\mathrm{T}} \quad(\overline{\boldsymbol{\Phi}}=\boldsymbol{\Phi}-\boldsymbol{E} \boldsymbol{\Phi}) \\
& =(\boldsymbol{\Phi}-\boldsymbol{E} \boldsymbol{\Phi})(\boldsymbol{\Phi}-\boldsymbol{E} \boldsymbol{\Phi})^{\mathrm{T}} \\
& =\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}-\boldsymbol{E} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}-\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{E}+\boldsymbol{E} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{E}
\end{aligned}
$$

Another issue: centering

Should we still pre-center \boldsymbol{X} ?

No. Centering \boldsymbol{X} does not mean $\boldsymbol{\Phi}$ is centered!

Remember all we need is Gram matrix. What is the Gram matrix after $\mathbf{\Phi}$ is centered?

Let $\boldsymbol{E} \in \mathbb{R}^{N \times N}$ be the matrix with all entries being $\frac{1}{N}$,

$$
\begin{aligned}
\overline{\boldsymbol{K}} & =\overline{\boldsymbol{\Phi}} \overline{\boldsymbol{\Phi}}^{\mathrm{T}} \quad(\overline{\boldsymbol{\Phi}}=\boldsymbol{\Phi}-\boldsymbol{E} \boldsymbol{\Phi}) \\
& =(\boldsymbol{\Phi}-\boldsymbol{E} \boldsymbol{\Phi})(\boldsymbol{\Phi}-\boldsymbol{E} \boldsymbol{\Phi})^{\mathrm{T}} \\
& =\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}-\boldsymbol{E} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}-\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{E}+\boldsymbol{E} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{E} \\
& =\boldsymbol{K}-\boldsymbol{E} \boldsymbol{K}-\boldsymbol{K} \boldsymbol{E}+\boldsymbol{E} \boldsymbol{K} \boldsymbol{E}
\end{aligned}
$$

KPCA (contrast this with PCA on Slide 43)

Input: a dataset $\boldsymbol{X}, \#$ components p we want, a kernel fucntion k

KPCA (contrast this with PCA on Slide 43)

Input: a dataset \boldsymbol{X}, \#components p we want, a kernel fucntion k

Step 1 Compute the Gram matrix \boldsymbol{K} and the centered Gram matrix

$$
\overline{\boldsymbol{K}}=\boldsymbol{K}-\boldsymbol{E} \boldsymbol{K}-\boldsymbol{K} \boldsymbol{E}+\boldsymbol{E} \boldsymbol{K} \boldsymbol{E} \quad \text { (implicitly centering } \boldsymbol{\Phi} \text {) }
$$

KPCA (contrast this with PCA on Slide 43)

Input: a dataset $\boldsymbol{X}, \#$ components p we want, a kernel fucntion k

Step 1 Compute the Gram matrix \boldsymbol{K} and the centered Gram matrix

$$
\overline{\boldsymbol{K}}=\boldsymbol{K}-\boldsymbol{E} \boldsymbol{K}-\boldsymbol{K} \boldsymbol{E}+\boldsymbol{E} \boldsymbol{K} \boldsymbol{E} \quad \text { (implicitly centering } \boldsymbol{\Phi} \text {) }
$$

Step 2 Find the top p eigenvectors of $\overline{\boldsymbol{K}}$ with the appropriate scaling, denoted by $\boldsymbol{A} \in \mathbb{R}^{\mathrm{N} \times p}$

KPCA (contrast this with PCA on Slide 43)

Input: a dataset \boldsymbol{X}, \#components p we want, a kernel fucntion k

Step 1 Compute the Gram matrix \boldsymbol{K} and the centered Gram matrix

$$
\overline{\boldsymbol{K}}=\boldsymbol{K}-\boldsymbol{E} \boldsymbol{K}-\boldsymbol{K} \boldsymbol{E}+\boldsymbol{E} \boldsymbol{K} \boldsymbol{E} \quad \text { (implicitly centering } \boldsymbol{\Phi} \text {) }
$$

Step 2 Find the top p eigenvectors of $\overline{\boldsymbol{K}}$ with the appropriate scaling, denoted by $\boldsymbol{A} \in \mathbb{R}^{\mathrm{N} \times p}$
(implicitly finding unit eigenvectors of $\overline{\boldsymbol{\Phi}}^{\mathrm{T}} \overline{\boldsymbol{\Phi}}: \boldsymbol{V}=\overline{\boldsymbol{\Phi}}^{\mathrm{T}} \boldsymbol{A} \in \mathbb{R}^{\mathrm{M} \times p}$)

KPCA (contrast this with PCA on Slide 43)

Input: a dataset \boldsymbol{X}, \#components p we want, a kernel fucntion k

Step 1 Compute the Gram matrix \boldsymbol{K} and the centered Gram matrix

$$
\overline{\boldsymbol{K}}=\boldsymbol{K}-\boldsymbol{E} \boldsymbol{K}-\boldsymbol{K} \boldsymbol{E}+\boldsymbol{E} \boldsymbol{K} \boldsymbol{E} \quad \text { (implicitly centering } \boldsymbol{\Phi} \text {) }
$$

Step 2 Find the top p eigenvectors of $\overline{\boldsymbol{K}}$ with the appropriate scaling, denoted by $\boldsymbol{A} \in \mathbb{R}^{\mathrm{N} \times p}$
(implicitly finding unit eigenvectors of $\overline{\boldsymbol{\Phi}}^{\mathrm{T}} \overline{\boldsymbol{\Phi}}: \boldsymbol{V}=\overline{\boldsymbol{\Phi}}^{\mathrm{T}} \boldsymbol{A} \in \mathbb{R}^{\mathrm{M} \times p}$)

Step 3 Construct the new dataset $\overline{\boldsymbol{K}} \boldsymbol{A} \in \mathbb{R}^{\mathbf{N} \times p}$

KPCA (contrast this with PCA on Slide 43)

Input: a dataset \boldsymbol{X}, \#components p we want, a kernel fucntion k

Step 1 Compute the Gram matrix \boldsymbol{K} and the centered Gram matrix

$$
\overline{\boldsymbol{K}}=\boldsymbol{K}-\boldsymbol{E} \boldsymbol{K}-\boldsymbol{K} \boldsymbol{E}+\boldsymbol{E} \boldsymbol{K} \boldsymbol{E} \quad \text { (implicitly centering } \boldsymbol{\Phi} \text {) }
$$

Step 2 Find the top p eigenvectors of $\overline{\boldsymbol{K}}$ with the appropriate scaling, denoted by $\boldsymbol{A} \in \mathbb{R}^{\mathrm{N} \times p}$
(implicitly finding unit eigenvectors of $\overline{\boldsymbol{\Phi}}^{\mathrm{T}} \overline{\boldsymbol{\Phi}}: \boldsymbol{V}=\overline{\boldsymbol{\Phi}}^{\mathrm{T}} \boldsymbol{A} \in \mathbb{R}^{\mathrm{M} \times p}$)

Step 3 Construct the new dataset $\overline{\boldsymbol{K}} \boldsymbol{A} \in \mathbb{R}^{\mathbf{N} \times p}$
(implicitly/equivalently computing $\overline{\boldsymbol{\Phi}} \boldsymbol{V}=\overline{\boldsymbol{\Phi}} \overline{\boldsymbol{\Phi}}^{\mathrm{T}} \boldsymbol{A}$)

Example

Applying kernel $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}^{\prime}+1\right)^{2}$:

Example

Applying Gaussian kernel $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left(\frac{-\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)$:

Denoising via PCA

Original data
 IIAK185G78910

Data corrupted with Gaussian noise

Result after linear PCA

Result after kernel PCA, Gaussian kernel

