CSCI567 Machine Learning (Fall 2023)

Prof. Dani Yogatama Slide Deck from Prof. Haipeng Luo
University of Southern California

Oct 20, 2023

Outline

(1) Clustering
(2) Gaussian mixture models

Outline

(1) Clustering

- Problem setup
- K-means algorithm
- Initialization and Convergence

(2) Gaussian mixture models

Supervised learning v.s unsupervised learning

Recall there are different types of machine learning problems

Supervised learning v.s unsupervised learning

Recall there are different types of machine learning problems

- supervised learning (what we have discussed so far) Aim to predict, e.g. classification and regression

Supervised learning v.s unsupervised learning

Recall there are different types of machine learning problems

- supervised learning (what we have discussed so far) Aim to predict, e.g. classification and regression
- unsupervised learning (main focus from now on)

Aim to discover hidden/latent patterns and explore data

Supervised learning v.s unsupervised learning

Recall there are different types of machine learning problems

- supervised learning (what we have discussed so far) Aim to predict, e.g. classification and regression
- unsupervised learning (main focus from now on) Aim to discover hidden/latent patterns and explore data

Today's focus: clustering, an important unsupervised learning problem

Clustering: informal definition

Given: a set of data points (feature vectors), without labels

Clustering: informal definition

Given: a set of data points (feature vectors), without labels
Output: group the data into some clusters,

Clustering: informal definition

Given: a set of data points (feature vectors), without labels
Output: group the data into some clusters, which means

- assign each point to a specific cluster
- find the center (representative/prototype/...) of each cluster

Clustering: formal definition

Given: data points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N} \in \mathbb{R}^{\mathrm{D}}$

Clustering: formal definition

Given: data points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N} \in \mathbb{R}^{\mathrm{D}}$ and \#clusters K we want

Clustering: formal definition

Given: data points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N} \in \mathbb{R}^{\mathrm{D}}$ and \#clusters K we want
Output: group the data into K clusters, which means

- find assignment $\gamma_{n k} \in\{0,1\}$ for each data point $n \in[N]$ and $k \in[K]$ s.t. $\sum_{k \in[K]} \gamma_{n k}=1$ for any fixed n

Clustering: formal definition

Given: data points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N} \in \mathbb{R}^{\mathrm{D}}$ and $\#$ clusters K we want
Output: group the data into K clusters, which means

- find assignment $\gamma_{n k} \in\{0,1\}$ for each data point $n \in[N]$ and $k \in[K]$ s.t. $\sum_{k \in[K]} \gamma_{n k}=1$ for any fixed n
- find the cluster centers $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K} \in \mathbb{R}^{\mathrm{D}}$

Many applications

- recognize communities in a social network
- group similar customers in market research
- image segmentation
- accelerate other algorithms (e.g. NNC as in programing projects)

One example

image compression:

- each pixel is a point
- perform clustering over these points
- replace each point by the center of the cluster it belongs to

Original image
Large $K \longrightarrow$ Small K

Formal Objective

Key difference from supervised learning problems: no labels given, which means no ground-truth to even measure the quality of your answer!

Formal Objective

Key difference from supervised learning problems: no labels given, which means no ground-truth to even measure the quality of your answer!

Still, we can turn it into an optimization problem, e.g. through the popular "K-means" objective: find $\gamma_{n k}$ and $\boldsymbol{\mu}_{k}$ to minimize

$$
F\left(\left\{\gamma_{n k}\right\},\left\{\boldsymbol{\mu}_{k}\right\}\right)=\sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{n k}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right\|_{2}^{2}
$$

i.e. the sum of squared distances of each point to its center.

Formal Objective

Key difference from supervised learning problems: no labels given, which means no ground-truth to even measure the quality of your answer!

Still, we can turn it into an optimization problem, e.g. through the popular "K-means" objective: find $\gamma_{n k}$ and $\boldsymbol{\mu}_{k}$ to minimize

$$
F\left(\left\{\gamma_{n k}\right\},\left\{\boldsymbol{\mu}_{k}\right\}\right)=\sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{n k}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right\|_{2}^{2}
$$

i.e. the sum of squared distances of each point to its center.

Unfortunately, finding the exact minimizer is NP-hard!

Alternating minimization

Instead, use a heuristic that alternatingly minimizes over $\left\{\gamma_{n k}\right\}$ and $\left\{\boldsymbol{\mu}_{k}\right\}$:

Alternating minimization

Instead, use a heuristic that alternatingly minimizes over $\left\{\gamma_{n k}\right\}$ and $\left\{\boldsymbol{\mu}_{k}\right\}$:
Initialize $\left\{\boldsymbol{\mu}_{k}^{(1)}\right\}$

Alternating minimization

Instead, use a heuristic that alternatingly minimizes over $\left\{\gamma_{n k}\right\}$ and $\left\{\boldsymbol{\mu}_{k}\right\}$:
Initialize $\left\{\boldsymbol{\mu}_{k}^{(1)}\right\}$
For $t=1,2, \ldots$

- find

$$
\left\{\gamma_{n k}^{(t+1)}\right\}=\underset{\left\{\gamma_{n k}\right\}}{\operatorname{argmin}} F\left(\left\{\gamma_{n k}\right\},\left\{\boldsymbol{\mu}_{k}^{(t)}\right\}\right)
$$

Alternating minimization

Instead, use a heuristic that alternatingly minimizes over $\left\{\gamma_{n k}\right\}$ and $\left\{\boldsymbol{\mu}_{k}\right\}$:
Initialize $\left\{\boldsymbol{\mu}_{k}^{(1)}\right\}$
For $t=1,2, \ldots$

- find

$$
\left\{\gamma_{n k}^{(t+1)}\right\}=\underset{\left\{\gamma_{n k}\right\}}{\operatorname{argmin}} F\left(\left\{\gamma_{n k}\right\},\left\{\boldsymbol{\mu}_{k}^{(t)}\right\}\right)
$$

- find

$$
\left\{\boldsymbol{\mu}_{k}^{(t+1)}\right\}=\underset{\left\{\boldsymbol{\mu}_{k}\right\}}{\operatorname{argmin}} F\left(\left\{\gamma_{n k}^{(t+1)}\right\},\left\{\boldsymbol{\mu}_{k}\right\}\right)
$$

A closer look

The first step

$$
\min _{\left\{\gamma_{n k}\right\}} F\left(\left\{\gamma_{n k}\right\},\left\{\boldsymbol{\mu}_{k}\right\}\right)=\min _{\left\{\gamma_{n k}\right\}} \sum_{n} \sum_{k} \gamma_{n k}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right\|_{2}^{2}
$$

A closer look

The first step

$$
\begin{aligned}
\min _{\left\{\gamma_{n k}\right\}} F\left(\left\{\gamma_{n k}\right\},\left\{\boldsymbol{\mu}_{k}\right\}\right) & =\min _{\left\{\gamma_{n k}\right\}} \sum_{n} \sum_{k} \gamma_{n k}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right\|_{2}^{2} \\
& =\sum_{n} \min _{\left\{\gamma_{n k}\right\}} \sum_{k} \gamma_{n k}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right\|_{2}^{2}
\end{aligned}
$$

A closer look

The first step

$$
\begin{aligned}
\min _{\left\{\gamma_{n k}\right\}} F\left(\left\{\gamma_{n k}\right\},\left\{\boldsymbol{\mu}_{k}\right\}\right) & =\min _{\left\{\gamma_{n k}\right\}} \sum_{n} \sum_{k} \gamma_{n k}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right\|_{2}^{2} \\
& =\sum_{n} \min _{\left\{\gamma_{n k}\right\}} \sum_{k} \gamma_{n k}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right\|_{2}^{2}
\end{aligned}
$$

is simply to assign each \boldsymbol{x}_{n} to the closest $\boldsymbol{\mu}_{k}$, i.e.

$$
\gamma_{n k}=\mathbb{I}\left[k=\underset{c}{\operatorname{argmin}}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{c}\right\|_{2}^{2}\right]
$$

for all $k \in[K]$ and $n \in[N]$.

A closer look

The second step

$$
\min _{\left\{\boldsymbol{\mu}_{k}\right\}} F\left(\left\{\gamma_{n k}\right\},\left\{\boldsymbol{\mu}_{k}\right\}\right)=\min _{\left\{\boldsymbol{\mu}_{k}\right\}} \sum_{n} \sum_{k} \gamma_{n k}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right\|_{2}^{2}
$$

A closer look

The second step

$$
\begin{aligned}
\min _{\left\{\boldsymbol{\mu}_{k}\right\}} F\left(\left\{\gamma_{n k}\right\},\left\{\boldsymbol{\mu}_{k}\right\}\right) & =\min _{\left\{\boldsymbol{\mu}_{k}\right\}} \sum_{n} \sum_{k} \gamma_{n k}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right\|_{2}^{2} \\
& =\sum_{k} \min _{\boldsymbol{\mu}_{k}} \sum_{n: \gamma_{n k}=1}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right\|_{2}^{2}
\end{aligned}
$$

A closer look

The second step

$$
\begin{aligned}
\min _{\left\{\boldsymbol{\mu}_{k}\right\}} F\left(\left\{\gamma_{n k}\right\},\left\{\boldsymbol{\mu}_{k}\right\}\right) & =\min _{\left\{\boldsymbol{\mu}_{k}\right\}} \sum_{n} \sum_{k} \gamma_{n k}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right\|_{2}^{2} \\
& =\sum_{k} \min _{\boldsymbol{\mu}_{k}} \sum_{n: \gamma_{n k}=1}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right\|_{2}^{2}
\end{aligned}
$$

is simply to average the points of each cluster (hence the name)

$$
\boldsymbol{\mu}_{k}=\frac{\sum_{n: \gamma_{n k}=1} \boldsymbol{x}_{n}}{\left|\left\{n: \gamma_{n k}=1\right\}\right|}=\frac{\sum_{n} \gamma_{n k} \boldsymbol{x}_{n}}{\sum_{n} \gamma_{n k}}
$$

for each $k \in[K]$.

The K-means algorithm

Step 0 Initialize $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$

The K-means algorithm

Step 0 Initialize $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$
Step 1 Fix the centers $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$, assign each point to the closest center:

$$
\gamma_{n k}=\mathbb{I}\left[k=\underset{c}{\operatorname{argmin}}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{c}\right\|_{2}^{2}\right]
$$

The K-means algorithm

Step 0 Initialize $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$
Step 1 Fix the centers $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$, assign each point to the closest center:

$$
\gamma_{n k}=\mathbb{I}\left[k=\underset{c}{\operatorname{argmin}}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{c}\right\|_{2}^{2}\right]
$$

Step 2 Fix the assignment $\left\{\gamma_{n k}\right\}$, update the centers

$$
\boldsymbol{\mu}_{k}=\frac{\sum_{n} \gamma_{n k} \boldsymbol{x}_{n}}{\sum_{n} \gamma_{n k}}
$$

The K-means algorithm

Step 0 Initialize $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$
Step 1 Fix the centers $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$, assign each point to the closest center:

$$
\gamma_{n k}=\mathbb{I}\left[k=\underset{c}{\operatorname{argmin}}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{c}\right\|_{2}^{2}\right]
$$

Step 2 Fix the assignment $\left\{\gamma_{n k}\right\}$, update the centers

$$
\boldsymbol{\mu}_{k}=\frac{\sum_{n} \gamma_{n k} \boldsymbol{x}_{n}}{\sum_{n} \gamma_{n k}}
$$

Step 3 Return to Step 1 if not converged

An example

An example

An example

An example

An example

An example

An example

An example

An example

How to initialize?

There are different ways to initialize:

How to initialize?

There are different ways to initialize:

- randomly pick K points as initial centers

How to initialize?

There are different ways to initialize:

- randomly pick K points as initial centers
- or randomly assign each point to a cluster, then average

How to initialize?

There are different ways to initialize:

- randomly pick K points as initial centers
- or randomly assign each point to a cluster, then average
- or more sophisticated approaches (e.g. K-means++)

How to initialize?

There are different ways to initialize:

- randomly pick K points as initial centers
- or randomly assign each point to a cluster, then average
- or more sophisticated approaches (e.g. K-means++)

Initialization matters for convergence.

Convergence

K-means will converge in a finite number of iterations, why?

Convergence

K-means will converge in a finite number of iterations, why?

- objective decreases at each step

Convergence

K-means will converge in a finite number of iterations, why?

- objective decreases at each step
- objective is lower bounded by 0

Convergence

K-means will converge in a finite number of iterations, why?

- objective decreases at each step
- objective is lower bounded by 0
- \#possible_assignments is finite (K^{N}, exponentially large though)

Convergence

K-means will converge in a finite number of iterations, why?

- objective decreases at each step
- objective is lower bounded by 0
- \#possible_assignments is finite (K^{N}, exponentially large though)

However

- it could take exponentially many iterations to converge

Convergence

K-means will converge in a finite number of iterations, why?

- objective decreases at each step
- objective is lower bounded by 0
- \#possible_assignments is finite (K^{N}, exponentially large though)

However

- it could take exponentially many iterations to converge
- and it might not converge to the global minimum of the K-means objective

Local minimum v.s global minimum

Simple example: 4 data points, 2 clusters, 2 different initializations

Local minimum v.s global minimum

Simple example: 4 data points, 2 clusters, 2 different initializations

K-means converges immediately in both cases,

Local minimum v.s global minimum

Simple example: 4 data points, 2 clusters, 2 different initializations

K-means converges immediately in both cases, but

- left has K-means objective $L^{2}=4 W^{2}$

Local minimum v.s global minimum

Simple example: 4 data points, 2 clusters, 2 different initializations

K-means converges immediately in both cases, but

- left has K-means objective $L^{2}=4 W^{2}$
- right has K-means objective $W^{2}, 4$ times better than left!

Local minimum v.s global minimum

Simple example: 4 data points, 2 clusters, 2 different initializations

$$
L=2 W
$$

versus

K-means converges immediately in both cases, but

- left has K-means objective $L^{2}=4 W^{2}$
- right has K-means objective $W^{2}, 4$ times better than left!
- in fact, left is local minimum, and right is global minimum.

Local minimum v.s global minimum

Local minimum v.s global minimum

- moreover, local minimum can be arbitrarily worse if we increase L

Local minimum v.s global minimum

- moreover, local minimum can be arbitrarily worse if we increase L
- so initialization matters a lot for K-means

How common initialization methods perform?

- randomly pick K points as initial centers
- or randomly assign each point to a cluster, then average
- or more sophisticated approaches

How common initialization methods perform?

- randomly pick K points as initial centers: fails with $1 / 3$ probability
- or randomly assign each point to a cluster, then average
- or more sophisticated approaches

How common initialization methods perform?

- randomly pick K points as initial centers: fails with $1 / 3$ probability
- or randomly assign each point to a cluster, then average: similarly fail with a constant probability
- or more sophisticated approaches

How common initialization methods perform?

- randomly pick K points as initial centers: fails with $1 / 3$ probability
- or randomly assign each point to a cluster, then average: similarly fail with a constant probability
- or more sophisticated approaches: K-means++ guarantees to find a solution that in expectation is at most $O(\log K)$ times of the optimal

K-means++

K-means++ is K-means with a better initialization procedure:

K-means++

K-means++ is K-means with a better initialization procedure:

Start with a random data point as the first center $\boldsymbol{\mu}_{1}$

K-means++

K-means++ is K-means with a better initialization procedure:

Start with a random data point as the first center $\boldsymbol{\mu}_{1}$
For $k=2, \ldots, K$

- randomly pick the k-th center $\boldsymbol{\mu}_{k}$ such that

$$
\operatorname{Pr}\left[\boldsymbol{\mu}_{k}=\boldsymbol{x}_{n}\right] \propto \min _{j=1, \ldots, k-1}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{j}\right\|_{2}^{2}
$$

K-means++

K-means++ is K-means with a better initialization procedure:

Start with a random data point as the first center $\boldsymbol{\mu}_{1}$
For $k=2, \ldots, K$

- randomly pick the k-th center $\boldsymbol{\mu}_{k}$ such that

$$
\operatorname{Pr}\left[\boldsymbol{\mu}_{k}=\boldsymbol{x}_{n}\right] \propto \min _{j=1, \ldots, k-1}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{j}\right\|_{2}^{2}
$$

Intuitively this spreads out the initial centers.

K-means++ on the same example

K-means++ on the same example

Suppose we pick top left as $\boldsymbol{\mu}_{1}$, then

K-means++ on the same example

Suppose we pick top left as $\boldsymbol{\mu}_{1}$, then

- $\operatorname{Pr}\left[\boldsymbol{\mu}_{2}=\right.$ bottom left $] \propto W^{2}$,

K-means++ on the same example

Suppose we pick top left as $\boldsymbol{\mu}_{1}$, then

- $\operatorname{Pr}\left[\boldsymbol{\mu}_{2}=\right.$ bottom left $] \propto W^{2}, \quad \operatorname{Pr}\left[\boldsymbol{\mu}_{2}=\right.$ top right $] \propto L^{2}$

K-means++ on the same example

Suppose we pick top left as $\boldsymbol{\mu}_{1}$, then

- $\operatorname{Pr}\left[\boldsymbol{\mu}_{2}=\right.$ bottom left $] \propto W^{2}, \quad \operatorname{Pr}\left[\boldsymbol{\mu}_{2}=\right.$ top right $] \propto L^{2}$
- $\operatorname{Pr}\left[\boldsymbol{\mu}_{2}=\right.$ bottom right $] \propto W^{2}+L^{2}$

K-means++ on the same example

Suppose we pick top left as $\boldsymbol{\mu}_{1}$, then

- $\operatorname{Pr}\left[\boldsymbol{\mu}_{2}=\right.$ bottom left $] \propto W^{2}, \quad \operatorname{Pr}\left[\boldsymbol{\mu}_{2}=\right.$ top right $] \propto L^{2}$
- $\operatorname{Pr}\left[\boldsymbol{\mu}_{2}=\right.$ bottom right $] \propto W^{2}+L^{2}$

So the expected K -means objective is

$$
\frac{W^{2}}{2\left(W^{2}+L^{2}\right)} \cdot L^{2}+\left(\frac{L^{2}}{2\left(W^{2}+L^{2}\right)}+\frac{1}{2}\right) \cdot W^{2}
$$

K-means++ on the same example

Suppose we pick top left as $\boldsymbol{\mu}_{1}$, then

- $\operatorname{Pr}\left[\boldsymbol{\mu}_{2}=\right.$ bottom left $] \propto W^{2}, \quad \operatorname{Pr}\left[\boldsymbol{\mu}_{2}=\right.$ top right $] \propto L^{2}$
- $\operatorname{Pr}\left[\boldsymbol{\mu}_{2}=\right.$ bottom right $] \propto W^{2}+L^{2}$

So the expected K -means objective is

$$
\frac{W^{2}}{2\left(W^{2}+L^{2}\right)} \cdot L^{2}+\left(\frac{L^{2}}{2\left(W^{2}+L^{2}\right)}+\frac{1}{2}\right) \cdot W^{2} \leq \frac{3}{2} W^{2},
$$

K-means++ on the same example

Suppose we pick top left as $\boldsymbol{\mu}_{1}$, then

- $\operatorname{Pr}\left[\boldsymbol{\mu}_{2}=\right.$ bottom left $] \propto W^{2}, \quad \operatorname{Pr}\left[\boldsymbol{\mu}_{2}=\right.$ top right $] \propto L^{2}$
- $\operatorname{Pr}\left[\boldsymbol{\mu}_{2}=\right.$ bottom right $] \propto W^{2}+L^{2}$

So the expected K-means objective is

$$
\frac{W^{2}}{2\left(W^{2}+L^{2}\right)} \cdot L^{2}+\left(\frac{L^{2}}{2\left(W^{2}+L^{2}\right)}+\frac{1}{2}\right) \cdot W^{2} \leq \frac{3}{2} W^{2},
$$

that is, at most 1.5 times of the optimal.

Summary for K-means

K-means is alternating minimization for the K-means objective.

The initialization matters a lot for the convergence.

K-means++ uses a theoretically (and often empirically) better initialization.

Outline

© Clustering
(2) Gaussian mixture models

- Motivation and Model
- EM algorithm
- EM applied to GMMs

Gaussian mixture models

Gaussian mixture models (GMM) is a probabilistic approach for clustering

Gaussian mixture models

Gaussian mixture models (GMM) is a probabilistic approach for clustering

- more explanatory than minimizing the K-means objective
- can be seen as a soft version of K-means

Gaussian mixture models

Gaussian mixture models (GMM) is a probabilistic approach for clustering

- more explanatory than minimizing the K-means objective
- can be seen as a soft version of K-means

To solve GMM, we will introduce a powerful method for learning probabilistic model: Expectation-Maximization (EM) algorithm

A generative model

For classification, we discussed the sigmoid model to "explain" how the labels are generated.

A generative model

For classification, we discussed the sigmoid model to "explain" how the labels are generated.

Similarly, for clustering, we want to come up with a probabilistic model p to "explain" how the data is generated.

A generative model

For classification, we discussed the sigmoid model to "explain" how the labels are generated.

Similarly, for clustering, we want to come up with a probabilistic model p to "explain" how the data is generated.

That is, each point is an independent sample of $\boldsymbol{x} \sim p$.

A generative model

For classification, we discussed the sigmoid model to "explain" how the labels are generated.

Similarly, for clustering, we want to come up with a probabilistic model p to "explain" how the data is generated.

That is, each point is an independent sample of $\boldsymbol{x} \sim p$.

What probabilistic model generates data like this?

GMM: intuition

GMM is a natural model to explain such data

Assume there are 3 ground-truth Gaussian models.

GMM: intuition

GMM is a natural model to explain such data

Assume there are 3 ground-truth Gaussian models. To generate a point, we

- first randomly pick one of the Gaussian models,

GMM: intuition

GMM is a natural model to explain such data

Assume there are 3 ground-truth Gaussian models. To generate a point, we

- first randomly pick one of the Gaussian models,
- then draw a point according this Gaussian.

GMM: intuition

GMM is a natural model to explain such data

Assume there are 3 ground-truth Gaussian models. To generate a point, we

- first randomly pick one of the Gaussian models,
- then draw a point according this Gaussian.

Hence the name "Gaussian mixture model".

GMM: formal definition

A GMM has the following density function:

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

GMM: formal definition

A GMM has the following density function:

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

where

- K : the number of Gaussian components (same as \#clusters we want)

GMM: formal definition

A GMM has the following density function:

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

where

- K : the number of Gaussian components (same as \#clusters we want)
- $\omega_{1}, \ldots, \omega_{K}$: mixture weights, a distribution over K components

GMM: formal definition

A GMM has the following density function:

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

where

- K : the number of Gaussian components (same as \#clusters we want)
- $\omega_{1}, \ldots, \omega_{K}$: mixture weights, a distribution over K components
- $\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$: mean and covariance matrix of the k-th Gaussian

GMM: formal definition

A GMM has the following density function:

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

where

- K : the number of Gaussian components (same as \#clusters we want)
- $\omega_{1}, \ldots, \omega_{K}$: mixture weights, a distribution over K components
- $\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$: mean and covariance matrix of the k-th Gaussian
- N : the density function for a Gaussian

Another view

By introducing a latent variable $z \in[K]$, which indicates cluster membership, we can see p as a marginal distribution
$p(\boldsymbol{x})=\sum_{k=1}^{K} p(\boldsymbol{x}, z=k)$

Another view

By introducing a latent variable $z \in[K]$, which indicates cluster membership, we can see p as a marginal distribution
$p(\boldsymbol{x})=\sum_{k=1}^{K} p(\boldsymbol{x}, z=k)=\sum_{k=1}^{K} p(z=k) p(\boldsymbol{x} \mid z=k)$

Another view

By introducing a latent variable $z \in[K]$, which indicates cluster membership, we can see p as a marginal distribution
$p(\boldsymbol{x})=\sum_{k=1}^{K} p(\boldsymbol{x}, z=k)=\sum_{k=1}^{K} p(z=k) p(\boldsymbol{x} \mid z=k)=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$

Another view

By introducing a latent variable $z \in[K]$, which indicates cluster membership, we can see p as a marginal distribution
$p(\boldsymbol{x})=\sum_{k=1}^{K} p(\boldsymbol{x}, z=k)=\sum_{k=1}^{K} p(z=k) p(\boldsymbol{x} \mid z=k)=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$
\boldsymbol{x} and z are both random variables drawn from the model

- \boldsymbol{x} is observed
- z is unobserved/latent

An example

The conditional distributions are

$$
\begin{aligned}
p(\boldsymbol{x} \mid z=\text { red }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) \\
p(\boldsymbol{x} \mid z=\text { blue }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
p(\boldsymbol{x} \mid z=\text { green }) & =N\left(x \mid \mu_{3}, \boldsymbol{\Sigma}_{3}\right)
\end{aligned}
$$

An example

The conditional distributions are

$$
\begin{aligned}
p(\boldsymbol{x} \mid z=\text { red }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) \\
p(\boldsymbol{x} \mid z=\text { blue }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
p(\boldsymbol{x} \mid z=\text { green }) & =N\left(x \mid \mu_{3}, \boldsymbol{\Sigma}_{3}\right)
\end{aligned}
$$

The marginal distribution is

$$
\begin{aligned}
p(\boldsymbol{x}) & =p(\text { red }) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right)+p(\text { blue }) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
& +p(\text { green }) N\left(x \mid \mu_{3}, \boldsymbol{\Sigma}_{3}\right)
\end{aligned}
$$

Learning GMMs

Learning a GMM means finding all the parameters $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$.

Learning GMMs

Learning a GMM means finding all the parameters $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$. In the process, we will learn the latent variable z_{n} as well:

$$
p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)
$$

Learning GMMs

Learning a GMM means finding all the parameters $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$. In the process, we will learn the latent variable z_{n} as well:

$$
p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right) \triangleq \gamma_{n k} \in[0,1]
$$

i.e. "soft assignment" of each point to each cluster, as opposed to "hard assignment" by K-means.

Learning GMMs

Learning a GMM means finding all the parameters $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$. In the process, we will learn the latent variable z_{n} as well:

$$
p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right) \triangleq \gamma_{n k} \in[0,1]
$$

i.e. "soft assignment" of each point to each cluster, as opposed to "hard assignment" by K-means.

GMM is more explanatory than K-means

- both learn the cluster centers $\boldsymbol{\mu}_{k}$'s

Learning GMMs

Learning a GMM means finding all the parameters $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$. In the process, we will learn the latent variable z_{n} as well:

$$
p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right) \triangleq \gamma_{n k} \in[0,1]
$$

i.e. "soft assignment" of each point to each cluster, as opposed to "hard assignment" by K-means.

GMM is more explanatory than K-means

- both learn the cluster centers $\boldsymbol{\mu}_{k}$'s
- in addition, GMM learns cluster weight ω_{k} and covariance $\boldsymbol{\Sigma}_{k}$,

Learning GMMs

Learning a GMM means finding all the parameters $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$. In the process, we will learn the latent variable z_{n} as well:

$$
p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right) \triangleq \gamma_{n k} \in[0,1]
$$

i.e. "soft assignment" of each point to each cluster, as opposed to "hard assignment" by K-means.

GMM is more explanatory than K-means

- both learn the cluster centers $\boldsymbol{\mu}_{k}$'s
- in addition, GMM learns cluster weight ω_{k} and covariance $\boldsymbol{\Sigma}_{k}$, thus
- we can predict probability of seeing a new point
- we can generate synthetic data

How to learn these parameters?

An obvious attempt is maximum-likelihood estimation (MLE): find

$$
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ln \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right)=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln p\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right) \triangleq \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P(\boldsymbol{\theta})
$$

How to learn these parameters?

An obvious attempt is maximum-likelihood estimation (MLE): find

$$
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ln \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right)=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln p\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right) \triangleq \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P(\boldsymbol{\theta})
$$

This is called incomplete log-likelihood (since z_{n} 's are unobserved), and is intractable in general (non-concave problem).

How to learn these parameters?

An obvious attempt is maximum-likelihood estimation (MLE): find

$$
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ln \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right)=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln p\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right) \triangleq \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P(\boldsymbol{\theta})
$$

This is called incomplete log-likelihood (since z_{n} 's are unobserved), and is intractable in general (non-concave problem).

One solution is to still apply GD/SGD, but a much more effective approach is the Expectation-Maximization (EM) algorithm.

Preview of EM for learning GMMs

Step 0 Initialize $\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}$ for each $k \in[K]$

Preview of EM for learning GMMs

Step 0 Initialize $\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}$ for each $k \in[K]$
Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$
\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right) \propto \omega_{k} N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Preview of EM for learning GMMs

Step 0 Initialize $\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}$ for each $k \in[K]$
Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$
\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right) \propto \omega_{k} N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$
\begin{gathered}
\omega_{k}=\frac{\sum_{n} \gamma_{n k}}{N} \quad \boldsymbol{\mu}_{k}=\frac{\sum_{n} \gamma_{n k} \boldsymbol{x}_{n}}{\sum_{n} \gamma_{n k}} \\
\boldsymbol{\Sigma}_{k}=\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}}
\end{gathered}
$$

Preview of EM for learning GMMs

Step 0 Initialize $\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}$ for each $k \in[K]$
Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$
\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right) \propto \omega_{k} N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$
\begin{gathered}
\omega_{k}=\frac{\sum_{n} \gamma_{n k}}{N} \quad \boldsymbol{\mu}_{k}=\frac{\sum_{n} \gamma_{n k} \boldsymbol{x}_{n}}{\sum_{n} \gamma_{n k}} \\
\boldsymbol{\Sigma}_{k}=\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}}
\end{gathered}
$$

Step 3 return to Step 1 if not converged

Preview of EM for learning GMMs

Step 0 Initialize $\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}$ for each $k \in[K]$
Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$
\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right) \propto \omega_{k} N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$
\begin{gathered}
\omega_{k}=\frac{\sum_{n} \gamma_{n k}}{N} \quad \boldsymbol{\mu}_{k}=\frac{\sum_{n} \gamma_{n k} \boldsymbol{x}_{n}}{\sum_{n} \gamma_{n k}} \\
\boldsymbol{\Sigma}_{k}=\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}}
\end{gathered}
$$

Step 3 return to Step 1 if not converged
We will see how this is a special case of EM.

Demo

Generate 50 data points from a mixture of 2 Gaussians with

- $\omega_{1}=0.3, \mu_{1}=-0.8, \Sigma_{1}=0.52$
- $\omega_{2}=0.7, \mu_{2}=1.2, \Sigma_{2}=0.35$

Demo

Generate 50 data points from a mixture of 2 Gaussians with

- $\omega_{1}=0.3, \mu_{1}=-0.8, \Sigma_{1}=0.52$
- $\omega_{2}=0.7, \mu_{2}=1.2, \Sigma_{2}=0.35$
histogram represents the data

Demo

Generate 50 data points from a mixture of 2 Gaussians with

- $\omega_{1}=0.3, \mu_{1}=-0.8, \Sigma_{1}=0.52$
- $\omega_{2}=0.7, \mu_{2}=1.2, \Sigma_{2}=0.35$

histogram represents the data

red curve represents the ground-truth density
$p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$

Demo

Generate 50 data points from a mixture of 2 Gaussians with

- $\omega_{1}=0.3, \mu_{1}=-0.8, \Sigma_{1}=0.52$
- $\omega_{2}=0.7, \mu_{2}=1.2, \Sigma_{2}=0.35$

histogram represents the data

red curve represents the ground-truth density
$p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$
blue curve represents the learned density for a specific round

Demo

Generate 50 data points from a mixture of 2 Gaussians with

- $\omega_{1}=0.3, \mu_{1}=-0.8, \Sigma_{1}=0.52$
- $\omega_{2}=0.7, \mu_{2}=1.2, \Sigma_{2}=0.35$

histogram represents the data

red curve represents the ground-truth density
$p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$
blue curve represents the learned density for a specific round

EM_demo.pdf shows how the blue curve moves towards red curve quickly via EM

EM algorithm

In general EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the maximizer of

$$
P(\boldsymbol{\theta})=\sum_{n=1}^{N} \ln p\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right)
$$

EM algorithm

In general EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the maximizer of

$$
P(\boldsymbol{\theta})=\sum_{n=1}^{N} \ln p\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right)=\sum_{n=1}^{N} \ln \int_{z_{n}} p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right) d z_{n}
$$

EM algorithm

In general EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the maximizer of

$$
P(\boldsymbol{\theta})=\sum_{n=1}^{N} \ln p\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right)=\sum_{n=1}^{N} \ln \int_{z_{n}} p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right) d z_{n}
$$

- $\boldsymbol{\theta}$ is the parameters for a general probabilistic model

EM algorithm

In general EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the maximizer of

$$
P(\boldsymbol{\theta})=\sum_{n=1}^{N} \ln p\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right)=\sum_{n=1}^{N} \ln \int_{z_{n}} p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right) d z_{n}
$$

- $\boldsymbol{\theta}$ is the parameters for a general probabilistic model
- \boldsymbol{x}_{n} 's are observed random variables

EM algorithm

In general EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the maximizer of

$$
P(\boldsymbol{\theta})=\sum_{n=1}^{N} \ln p\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right)=\sum_{n=1}^{N} \ln \int_{z_{n}} p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right) d z_{n}
$$

- $\boldsymbol{\theta}$ is the parameters for a general probabilistic model
- \boldsymbol{x}_{n} 's are observed random variables
- z_{n} 's are latent variables

EM algorithm

In general EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the maximizer of

$$
P(\boldsymbol{\theta})=\sum_{n=1}^{N} \ln p\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right)=\sum_{n=1}^{N} \ln \int_{z_{n}} p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right) d z_{n}
$$

- $\boldsymbol{\theta}$ is the parameters for a general probabilistic model
- \boldsymbol{x}_{n} 's are observed random variables
- z_{n} 's are latent variables

Again, directly solving the objective is intractable.

High level idea

Keep maximizing a lower bound of P that is more manageable

Derivation of EM

Finding the lower bound of P :

$$
\ln p(\boldsymbol{x} ; \boldsymbol{\theta})=\ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})}
$$

(true for any z)

Derivation of EM

Finding the lower bound of P :

$$
\begin{aligned}
& \ln p(\boldsymbol{x} ; \boldsymbol{\theta})=\ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})} \\
& =\mathbb{E}_{z \sim q}\left[\ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})}\right]
\end{aligned}
$$

(true for any z)
(true for any dist. q)

Derivation of EM

Finding the lower bound of P :

$$
\begin{array}{ll}
\ln p(\boldsymbol{x} ; \boldsymbol{\theta})=\ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})} & \text { (true f } \\
=\mathbb{E}_{z \sim q}\left[\ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})}\right] & \quad \text { (true for an } \\
=\mathbb{E}_{z \sim q}[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta})]-\mathbb{E}_{z \sim q}[\ln q(z)]-\mathbb{E}_{z \sim q}\left[\ln \frac{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})}{q(z)}\right]
\end{array}
$$

Derivation of EM

Finding the lower bound of P :

$$
\begin{array}{ll}
\ln p(\boldsymbol{x} ; \boldsymbol{\theta})=\ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})} & \quad \text { (true for any } z \text {) } \\
=\mathbb{E}_{z \sim q}\left[\ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})}\right] & \quad \text { (true for any dist. } q \text {) } \\
=\mathbb{E}_{z \sim q}[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta})]-\mathbb{E}_{z \sim q}[\ln q(z)]-\mathbb{E}_{z \sim q}\left[\ln \frac{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})}{q(z)}\right] \\
=\mathbb{E}_{z \sim q}[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta})]+H(q)-\mathbb{E}_{z \sim q}\left[\ln \frac{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})}{q(z)}\right] \quad(H \text { is entropy) }
\end{array}
$$

Derivation of EM

Finding the lower bound of P :

$$
\begin{array}{ll}
\ln p(\boldsymbol{x} ; \boldsymbol{\theta})=\ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})} & \quad \text { (true for any } z \text {) } \\
=\mathbb{E}_{z \sim q}\left[\ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})}\right] & \quad \text { (true for any dist. } q \text {) } \\
=\mathbb{E}_{z \sim q}[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta})]-\mathbb{E}_{z \sim q}[\ln q(z)]-\mathbb{E}_{z \sim q}\left[\ln \frac{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})}{q(z)}\right] \\
=\mathbb{E}_{z \sim q}[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta})]+H(q)-\mathbb{E}_{z \sim q}\left[\ln \frac{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})}{q(z)}\right] \quad(H \text { is entropy) } \\
\geq \mathbb{E}_{z \sim q}[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta})]+H(q)-\ln \mathbb{E}_{z \sim q}\left[\frac{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})}{q(z)}\right]
\end{array}
$$

Derivation of EM

Finding the lower bound of P :

$$
\begin{aligned}
& \ln p(\boldsymbol{x} ; \boldsymbol{\theta})=\ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})} \\
& =\mathbb{E}_{z \sim q}\left[\ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})}\right] \quad \text { (true for any } z \text {) } \\
& =\mathbb{E}_{z \sim q}[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta})]-\mathbb{E}_{z \sim q}[\ln q(z)]-\mathbb{E}_{z \sim q}\left[\ln \frac{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})}{q(z)}\right] \\
& =\mathbb{E}_{z \sim q}[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta})]+H(q)-\mathbb{E}_{z \sim q}\left[\ln \frac{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})}{q(z)}\right] \quad(H \text { is entropy) } \\
& \geq \mathbb{E}_{z \sim q}[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta})]+H(q)-\ln \mathbb{E}_{z \sim q}\left[\frac{p(z \mid \boldsymbol{x} ; \boldsymbol{\theta})}{q(z)}\right] \\
& =\mathbb{E}_{z \sim q}[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta})]+H(q)
\end{aligned}
$$

Alternatively maximize the lower bound

Therefore, we obtain a lower bound for the log-likelihood function

$$
\begin{aligned}
P(\boldsymbol{\theta}) & =\sum_{n=1}^{N} \ln p\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right) \\
& \geq \sum_{n=1}^{N}\left(\mathbb{E}_{z_{n} \sim q_{n}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right)\right]+H\left(q_{n}\right)\right)=F\left(\boldsymbol{\theta},\left\{q_{n}\right\}\right)
\end{aligned}
$$

Alternatively maximize the lower bound

Therefore, we obtain a lower bound for the log-likelihood function

$$
\begin{aligned}
P(\boldsymbol{\theta}) & =\sum_{n=1}^{N} \ln p\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right) \\
& \geq \sum_{n=1}^{N}\left(\mathbb{E}_{z_{n} \sim q_{n}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right)\right]+H\left(q_{n}\right)\right)=F\left(\boldsymbol{\theta},\left\{q_{n}\right\}\right)
\end{aligned}
$$

This holds for any $\left\{q_{n}\right\}$, so how do we choose?

Alternatively maximize the lower bound

Therefore, we obtain a lower bound for the log-likelihood function

$$
\begin{aligned}
P(\boldsymbol{\theta}) & =\sum_{n=1}^{N} \ln p\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right) \\
& \geq \sum_{n=1}^{N}\left(\mathbb{E}_{z_{n} \sim q_{n}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right)\right]+H\left(q_{n}\right)\right)=F\left(\boldsymbol{\theta},\left\{q_{n}\right\}\right)
\end{aligned}
$$

This holds for any $\left\{q_{n}\right\}$, so how do we choose? Naturally, the one that maximizes the lower bound (i.e. the tightest lower bound)!

Alternatively maximize the lower bound

Therefore, we obtain a lower bound for the log-likelihood function

$$
\begin{aligned}
P(\boldsymbol{\theta}) & =\sum_{n=1}^{N} \ln p\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right) \\
& \geq \sum_{n=1}^{N}\left(\mathbb{E}_{z_{n} \sim q_{n}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right)\right]+H\left(q_{n}\right)\right)=F\left(\boldsymbol{\theta},\left\{q_{n}\right\}\right)
\end{aligned}
$$

This holds for any $\left\{q_{n}\right\}$, so how do we choose? Naturally, the one that maximizes the lower bound (i.e. the tightest lower bound)!

Equivalently, this is the same as alternatingly maximizing F over $\left\{q_{n}\right\}$ and $\boldsymbol{\theta}$ (similar to K-means).

Maximizing over $\left\{q_{n}\right\}$

Fix $\boldsymbol{\theta}^{(t)}$, the solution to

$$
\underset{q_{n}}{\operatorname{argmax}} \mathbb{E}_{z_{n} \sim q_{n}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}^{(t)}\right)\right]+H\left(q_{n}\right)
$$

is $q_{n}^{(t)}$ s.t.

$$
q_{n}^{(t)}\left(z_{n}\right)=p\left(z_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right)
$$

i.e., the posterior distribution of z_{n} given \boldsymbol{x}_{n} and $\boldsymbol{\theta}^{(t)}$. (Verified in HW4)

Maximizing over $\left\{q_{n}\right\}$

Fix $\boldsymbol{\theta}^{(t)}$, the solution to

$$
\underset{q_{n}}{\operatorname{argmax}} \mathbb{E}_{z_{n} \sim q_{n}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}^{(t)}\right)\right]+H\left(q_{n}\right)
$$

is $q_{n}^{(t)}$ s.t.

$$
q_{n}^{(t)}\left(z_{n}\right)=p\left(z_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right) \propto p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}^{(t)}\right)
$$

i.e., the posterior distribution of z_{n} given \boldsymbol{x}_{n} and $\boldsymbol{\theta}^{(t)}$. (Verified in HW4)

Maximizing over $\left\{q_{n}\right\}$

Fix $\boldsymbol{\theta}^{(t)}$, the solution to

$$
\underset{q_{n}}{\operatorname{argmax}} \mathbb{E}_{z_{n} \sim q_{n}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}^{(t)}\right)\right]+H\left(q_{n}\right)
$$

is $q_{n}^{(t)}$ s.t.

$$
q_{n}^{(t)}\left(z_{n}\right)=p\left(z_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right) \propto p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}^{(t)}\right)
$$

i.e., the posterior distribution of z_{n} given \boldsymbol{x}_{n} and $\boldsymbol{\theta}^{(t)}$. (Verified in HW4)

So at $\boldsymbol{\theta}^{(t)}$, we found the tightest lower bound $F\left(\boldsymbol{\theta},\left\{q_{n}^{(t)}\right\}\right)$:

Maximizing over $\left\{q_{n}\right\}$

Fix $\boldsymbol{\theta}^{(t)}$, the solution to

$$
\underset{q_{n}}{\operatorname{argmax}} \mathbb{E}_{z_{n} \sim q_{n}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}^{(t)}\right)\right]+H\left(q_{n}\right)
$$

is $q_{n}^{(t)}$ s.t.

$$
q_{n}^{(t)}\left(z_{n}\right)=p\left(z_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right) \propto p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}^{(t)}\right)
$$

i.e., the posterior distribution of z_{n} given \boldsymbol{x}_{n} and $\boldsymbol{\theta}^{(t)}$. (Verified in HW4) So at $\boldsymbol{\theta}^{(t)}$, we found the tightest lower bound $F\left(\boldsymbol{\theta},\left\{q_{n}^{(t)}\right\}\right)$:

- $F\left(\boldsymbol{\theta},\left\{q_{n}^{(t)}\right\}\right) \leq P(\boldsymbol{\theta})$ for all $\boldsymbol{\theta}$.

Maximizing over $\left\{q_{n}\right\}$

Fix $\boldsymbol{\theta}^{(t)}$, the solution to

$$
\underset{q_{n}}{\operatorname{argmax}} \mathbb{E}_{z_{n} \sim q_{n}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}^{(t)}\right)\right]+H\left(q_{n}\right)
$$

is $q_{n}^{(t)}$ s.t.

$$
q_{n}^{(t)}\left(z_{n}\right)=p\left(z_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right) \propto p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}^{(t)}\right)
$$

i.e., the posterior distribution of z_{n} given \boldsymbol{x}_{n} and $\boldsymbol{\theta}^{(t)}$. (Verified in HW4) So at $\boldsymbol{\theta}^{(t)}$, we found the tightest lower bound $F\left(\boldsymbol{\theta},\left\{q_{n}^{(t)}\right\}\right)$:

- $F\left(\boldsymbol{\theta},\left\{q_{n}^{(t)}\right\}\right) \leq P(\boldsymbol{\theta})$ for all $\boldsymbol{\theta}$.
- $F\left(\boldsymbol{\theta}^{(t)},\left\{q_{n}^{(t)}\right\}\right)=P\left(\boldsymbol{\theta}^{(t)}\right)$ (verify yourself by going through Slide 36)

Maximizing over $\boldsymbol{\theta}$

Fix $\left\{q_{n}^{(t)}\right\}$, maximize over $\boldsymbol{\theta}$:

$$
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} F\left(\boldsymbol{\theta},\left\{q_{n}^{(t)}\right\}\right)
$$

Maximizing over $\boldsymbol{\theta}$

Fix $\left\{q_{n}^{(t)}\right\}$, maximize over $\boldsymbol{\theta}$:

$$
\begin{aligned}
& \underset{\boldsymbol{\theta}}{\operatorname{argmax}} F\left(\boldsymbol{\theta},\left\{q_{n}^{(t)}\right\}\right) \\
& =\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right)\right] \quad\left(H\left(q_{n}^{(t)}\right) \text { is independent of } \boldsymbol{\theta}\right)
\end{aligned}
$$

Maximizing over $\boldsymbol{\theta}$

Fix $\left\{q_{n}^{(t)}\right\}$, maximize over $\boldsymbol{\theta}$:

$$
\begin{array}{ll}
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} F\left(\boldsymbol{\theta},\left\{q_{n}^{(t)}\right\}\right) \\
=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right)\right] & \left(H\left(q_{n}^{(t)}\right) \text { is independent of } \boldsymbol{\theta}\right) \\
\triangleq \underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q\left(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)}\right) & \left(\left\{q_{n}^{(t)}\right\} \text { are computed via } \boldsymbol{\theta}^{(t)}\right)
\end{array}
$$

Maximizing over $\boldsymbol{\theta}$

Fix $\left\{q_{n}^{(t)}\right\}$, maximize over $\boldsymbol{\theta}$:

$$
\begin{array}{ll}
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} F\left(\boldsymbol{\theta},\left\{q_{n}^{(t)}\right\}\right) \\
=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right)\right] & \left(H\left(q_{n}^{(t)}\right) \text { is independent of } \boldsymbol{\theta}\right) \\
\triangleq \underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q\left(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)}\right) & \left(\left\{q_{n}^{(t)}\right\} \text { are computed via } \boldsymbol{\theta}^{(t)}\right)
\end{array}
$$

Q is the (expected) complete likelihood and is usually more tractable.

Maximizing over $\boldsymbol{\theta}$

Fix $\left\{q_{n}^{(t)}\right\}$, maximize over $\boldsymbol{\theta}$:

$$
\begin{array}{ll}
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} F\left(\boldsymbol{\theta},\left\{q_{n}^{(t)}\right\}\right) \\
=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right)\right] & \left(H\left(q_{n}^{(t)}\right) \text { is independent of } \boldsymbol{\theta}\right) \\
\triangleq \underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q\left(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)}\right) & \left(\left\{q_{n}^{(t)}\right\} \text { are computed via } \boldsymbol{\theta}^{(t)}\right)
\end{array}
$$

Q is the (expected) complete likelihood and is usually more tractable.

- versus the incomplete likelihood: $P(\boldsymbol{\theta})=\sum_{n=1}^{N} \ln p\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right)$

General EM algorithm

Step 0 Initialize $\boldsymbol{\theta}^{(1)}, t=1$

General EM algorithm

Step 0 Initialize $\boldsymbol{\theta}^{(1)}, t=1$
Step 1 (E-Step) update the posterior of latent variables

$$
q_{n}^{(t)}(\cdot)=p\left(\cdot \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right)
$$

General EM algorithm

Step 0 Initialize $\boldsymbol{\theta}^{(1)}, t=1$
Step 1 (E-Step) update the posterior of latent variables

$$
q_{n}^{(t)}(\cdot)=p\left(\cdot \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right)
$$

and obtain Expectation of complete likelihood

$$
Q\left(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)}\right)=\sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right)\right]
$$

General EM algorithm

Step 0 Initialize $\boldsymbol{\theta}^{(1)}$, $t=1$
Step 1 (E-Step) update the posterior of latent variables

$$
q_{n}^{(t)}(\cdot)=p\left(\cdot \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right)
$$

and obtain Expectation of complete likelihood

$$
Q\left(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)}\right)=\sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right)\right]
$$

Step 2 (M-Step) update the model parameter via Maximization

$$
\boldsymbol{\theta}^{(t+1)} \leftarrow \underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q\left(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)}\right)
$$

Step $3 t \leftarrow t+1$ and return to Step 1 if not converged

Pictorial explanation

Pictorial explanation

$P(\boldsymbol{\theta})$ is non-concave, but $Q\left(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)}\right)$ often is concave and easy to maximize.

$$
P\left(\boldsymbol{\theta}^{(\mathrm{t}+1)}\right) \geq F\left(\boldsymbol{\theta}^{(\mathrm{t}+1)} ;\left\{q_{n}^{(t)}\right\}\right)
$$

Pictorial explanation

$P(\boldsymbol{\theta})$ is non-concave, but $Q\left(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)}\right)$ often is concave and easy to maximize.

$$
\begin{aligned}
P\left(\boldsymbol{\theta}^{(\mathrm{t}+1)}\right) & \geq F\left(\boldsymbol{\theta}^{(\mathrm{t}+1)} ;\left\{q_{n}^{(t)}\right\}\right) \\
& \geq F\left(\boldsymbol{\theta}^{(\mathrm{t})} ;\left\{q_{n}^{(t)}\right\}\right)
\end{aligned}
$$

Pictorial explanation

$P(\boldsymbol{\theta})$ is non-concave, but $Q\left(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)}\right)$ often is concave and easy to maximize.

$$
\begin{aligned}
P\left(\boldsymbol{\theta}^{(\mathrm{t}+1)}\right) & \geq F\left(\boldsymbol{\theta}^{(\mathrm{t}+1)} ;\left\{q_{n}^{(t)}\right\}\right) \\
& \geq F\left(\boldsymbol{\theta}^{(\mathrm{t})} ;\left\{q_{n}^{(t)}\right\}\right) \\
& =P\left(\boldsymbol{\theta}^{(\mathrm{t})}\right)
\end{aligned}
$$

Pictorial explanation

$P(\boldsymbol{\theta})$ is non-concave, but $Q\left(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)}\right)$ often is concave and easy to maximize.

$$
\begin{aligned}
P\left(\boldsymbol{\theta}^{(\mathrm{t}+1)}\right) & \geq F\left(\boldsymbol{\theta}^{(\mathrm{t}+1)} ;\left\{q_{n}^{(t)}\right\}\right) \\
& \geq F\left(\boldsymbol{\theta}^{(\mathrm{t})} ;\left\{q_{n}^{(t)}\right\}\right) \\
& =P\left(\boldsymbol{\theta}^{(\mathrm{t})}\right)
\end{aligned}
$$

So EM always increases the objective value and will converge to some local maximum (similar to K-means).

Apply EM to learn GMMs

E-Step:

$$
\begin{aligned}
q_{n}^{(t)}\left(z_{n}=k\right) & =p\left(z_{n}=k \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right) \\
& \propto p\left(\boldsymbol{x}_{n}, z_{n}=k ; \boldsymbol{\theta}^{(t)}\right)
\end{aligned}
$$

Apply EM to learn GMMs

E-Step:

$$
\begin{aligned}
q_{n}^{(t)}\left(z_{n}=k\right) & =p\left(z_{n}=k \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right) \\
& \propto p\left(\boldsymbol{x}_{n}, z_{n}=k ; \boldsymbol{\theta}^{(t)}\right) \\
& =p\left(z_{n}=k ; \boldsymbol{\theta}^{(t)}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}=k ; \boldsymbol{\theta}^{(t)}\right)
\end{aligned}
$$

Apply EM to learn GMMs

E-Step:

$$
\begin{aligned}
q_{n}^{(t)}\left(z_{n}=k\right) & =p\left(z_{n}=k \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right) \\
& \propto p\left(\boldsymbol{x}_{n}, z_{n}=k ; \boldsymbol{\theta}^{(t)}\right) \\
& =p\left(z_{n}=k ; \boldsymbol{\theta}^{(t)}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}=k ; \boldsymbol{\theta}^{(t)}\right) \\
& =\omega_{k}^{(t)} N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}^{(t)}, \boldsymbol{\Sigma}_{k}^{(t)}\right)
\end{aligned}
$$

Apply EM to learn GMMs

E-Step:

$$
\begin{aligned}
q_{n}^{(t)}\left(z_{n}=k\right) & =p\left(z_{n}=k \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right) \\
& \propto p\left(\boldsymbol{x}_{n}, z_{n}=k ; \boldsymbol{\theta}^{(t)}\right) \\
& =p\left(z_{n}=k ; \boldsymbol{\theta}^{(t)}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}=k ; \boldsymbol{\theta}^{(t)}\right) \\
& =\omega_{k}^{(t)} N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}^{(t)}, \mathbf{\Sigma}_{k}^{(t)}\right)
\end{aligned}
$$

This computes the "soft assignment" $\gamma_{n k}=q_{n}^{(t)}\left(z_{n}=k\right)$, i.e. conditional probability of \boldsymbol{x}_{n} belonging to cluster k.

Apply EM to learn GMMs

M-Step:

$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right)\right]$

Apply EM to learn GMMs

M-Step:

$$
\begin{aligned}
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right) & =\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right)\right] \\
& =\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}}\left[\ln p\left(z_{n} ; \boldsymbol{\theta}\right)+\ln p\left(\boldsymbol{x}_{n} \mid z_{n} ; \boldsymbol{\theta}\right)\right]
\end{aligned}
$$

Apply EM to learn GMMs

M-Step:

$$
\begin{aligned}
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right) & =\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right)\right] \\
& =\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}}\left[\ln p\left(z_{n} ; \boldsymbol{\theta}\right)+\ln p\left(\boldsymbol{x}_{n} \mid z_{n} ; \boldsymbol{\theta}\right)\right] \\
& =\underset{\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}}{\operatorname{argmax}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{n k}\left(\ln \omega_{k}+\ln N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right)
\end{aligned}
$$

Apply EM to learn GMMs

M-Step:

$$
\begin{aligned}
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right) & =\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right)\right] \\
& =\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}}\left[\ln p\left(z_{n} ; \boldsymbol{\theta}\right)+\ln p\left(\boldsymbol{x}_{n} \mid z_{n} ; \boldsymbol{\theta}\right)\right] \\
& =\underset{\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}}{\operatorname{argmax}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{n k}\left(\ln \omega_{k}+\ln N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right)
\end{aligned}
$$

To find $\omega_{1}, \ldots, \omega_{K}$, solve

$$
\underset{\omega}{\operatorname{argmax}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{n k} \ln \omega_{k}
$$

Apply EM to learn GMMs

M-Step:

$$
\begin{aligned}
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right) & =\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}}\left[\ln p\left(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}\right)\right] \\
& =\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}}\left[\ln p\left(z_{n} ; \boldsymbol{\theta}\right)+\ln p\left(\boldsymbol{x}_{n} \mid z_{n} ; \boldsymbol{\theta}\right)\right] \\
& =\underset{\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}}{\operatorname{argmax}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{n k}\left(\ln \omega_{k}+\ln N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right)
\end{aligned}
$$

To find $\omega_{1}, \ldots, \omega_{K}$, solve

$$
\underset{\omega}{\operatorname{argmax}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{n k} \ln \omega_{k}
$$

To find each $\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}$, solve
$\underset{\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}}{\operatorname{argmax}} \sum_{n=1}^{N} \gamma_{n k} \ln N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$

M-Step (continued)

Solutions to previous two problems are very natural, for each k

$$
\omega_{k}=\frac{\sum_{n} \gamma_{n k}}{N}
$$

i.e. (weighted) fraction of examples belonging to cluster k

M-Step (continued)

Solutions to previous two problems are very natural, for each k

$$
\omega_{k}=\frac{\sum_{n} \gamma_{n k}}{N}
$$

i.e. (weighted) fraction of examples belonging to cluster k

$$
\boldsymbol{\mu}_{k}=\frac{\sum_{n} \gamma_{n k} \boldsymbol{x}_{n}}{\sum_{n} \gamma_{n k}}
$$

i.e. (weighted) average of examples belonging to cluster k

M-Step (continued)

Solutions to previous two problems are very natural, for each k

$$
\omega_{k}=\frac{\sum_{n} \gamma_{n k}}{N}
$$

i.e. (weighted) fraction of examples belonging to cluster k

$$
\boldsymbol{\mu}_{k}=\frac{\sum_{n} \gamma_{n k} \boldsymbol{x}_{n}}{\sum_{n} \gamma_{n k}}
$$

i.e. (weighted) average of examples belonging to cluster k

$$
\boldsymbol{\Sigma}_{k}=\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}}
$$

i.e (weighted) covariance of examples belonging to cluster k

M-Step (continued)

Solutions to previous two problems are very natural, for each k

$$
\omega_{k}=\frac{\sum_{n} \gamma_{n k}}{N}
$$

i.e. (weighted) fraction of examples belonging to cluster k

$$
\boldsymbol{\mu}_{k}=\frac{\sum_{n} \gamma_{n k} \boldsymbol{x}_{n}}{\sum_{n} \gamma_{n k}}
$$

i.e. (weighted) average of examples belonging to cluster k

$$
\boldsymbol{\Sigma}_{k}=\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}}
$$

i.e (weighted) covariance of examples belonging to cluster k

You will verify some of these in HW4.

Putting it together

EM for learning GMMs:
Step 0 Initialize $\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}$ for each $k \in[K]$

Putting it together

EM for learning GMMs:
Step 0 Initialize $\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}$ for each $k \in[K]$
Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$
\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right) \propto \omega_{k} N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Putting it together

EM for learning GMMs:
Step 0 Initialize $\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}$ for each $k \in[K]$
Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$
\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right) \propto \omega_{k} N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$
\begin{gathered}
\omega_{k}=\frac{\sum_{n} \gamma_{n k}}{N} \quad \boldsymbol{\mu}_{k}=\frac{\sum_{n} \gamma_{n k} \boldsymbol{x}_{n}}{\sum_{n} \gamma_{n k}} \\
\boldsymbol{\Sigma}_{k}=\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}}
\end{gathered}
$$

Putting it together

EM for learning GMMs:
Step 0 Initialize $\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}$ for each $k \in[K]$
Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$
\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right) \propto \omega_{k} N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$
\begin{gathered}
\omega_{k}=\frac{\sum_{n} \gamma_{n k}}{N} \quad \boldsymbol{\mu}_{k}=\frac{\sum_{n} \gamma_{n k} \boldsymbol{x}_{n}}{\sum_{n} \gamma_{n k}} \\
\boldsymbol{\Sigma}_{k}=\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}}
\end{gathered}
$$

Step 3 return to Step 1 if not converged

Connection to K-means

K-means is in fact a special case of EM for (a simplified) GMM:

Connection to K-means

K-means is in fact a special case of EM for (a simplified) GMM:

- assume $\boldsymbol{\Sigma}_{k}=\sigma^{2} \boldsymbol{I}$ for some fixed σ so only ω_{k} and $\boldsymbol{\mu}_{k}$ are parameters

Connection to K-means

K-means is in fact a special case of EM for (a simplified) GMM:

- assume $\boldsymbol{\Sigma}_{k}=\sigma^{2} \boldsymbol{I}$ for some fixed σ so only ω_{k} and $\boldsymbol{\mu}_{k}$ are parameters
- when $\sigma \rightarrow 0$, EM becomes K-means

Connection to K-means

K-means is in fact a special case of EM for (a simplified) GMM:

- assume $\boldsymbol{\Sigma}_{k}=\sigma^{2} \boldsymbol{I}$ for some fixed σ so only ω_{k} and $\boldsymbol{\mu}_{k}$ are parameters
- when $\sigma \rightarrow 0$, EM becomes K-means

GMM is a soft version of K-means and it provides a probabilistic interpretation of the data, which means we can predict and generate data after learning.

