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Motivation I: Autocomplete

You’re in the middle of writing an email or text message, and the system
predicts your next . . .

The heart of the language modeling task: what is the next word likely to
be, given the preceding ones?
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Motivation II: Speech Recognition

Successful speech recognition requires generating a word sequence that is:

Faithful to the acoustic input

Fluent

If we’re mapping acoustics a to word sequences w, then:

w∗ = argmax
w

Faithfulness(w;a) + Fluency(w)

Language models can provide a “fluency” score.
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Motivation III: Other Text-Output Applications

Other tasks that have text (or speech) as output:

translation from one language to another

conversational systems

document summarization

image captioning

optical character recognition

spelling and grammar correction

If we’re mapping inputs i to word sequences w, then:

w∗ = argmax
w

Faithfulness(w; i) + Fluency(w)

Language models can provide a “fluency” score.
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Motivation IV: Science

If we have two theories about language, A and B, and

Surprise(A; Data) < Surprise(B; Data),

then A is the preferred theory.

Language models can give us a notion of “surprise.”
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Very Quick Review of Probability

Event space (e.g., X , Y)—in this class, usually discrete

Random variables (e.g., X, Y )

Typical statement: “random variable X takes value x ∈ X with
probability p(X = x), or, in shorthand, p(x)”

Joint probability: p(X = x, Y = y)

Conditional probability: p(X = x | Y = y)

Always true:
p(X = x, Y = y) = p(X = x | Y = y) · p(Y = y)
= p(Y = y | X = x) · p(X = x)

Sometimes true: p(X = x, Y = y) = p(X = x) · p(Y = y)

The difference between true and estimated probability distributions
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Notation and Definitions

V is a finite set of (discrete) symbols (words or characters); V = |V|
V∗ is the (infinite) set of sequences of symbols from V
In language modeling, we imagine a sequence of random variables
X1, X2, . . . that continues until some Xn takes the value “8” (a
special end-of-sequence symbol).

V† is the (infinite) set of sequences of V symbols, with a single 8,
which is at the end.
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The Language Modeling Problem

Input: training data x = ⟨x1, . . . , xN ⟩ in V†

Sometimes it’s useful to consider a collection of observations, each in
V†, but it complicates notation.

Output: p : V† → R

Think of p as a measure of plausibility.
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Questions to Answer

1 How do we quantitatively evaluate language models?

2 How do we build language models?

3 How do we use language models?
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Probabilistic Language Model

We let p be a probability distribution, which means that

∀x ∈ V†, p(x) ≥ 0∑
x∈V†

p(x) = 1

Advantages:

Interpretability

We can apply the maximum likelihood principle to build a language
model from data
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Dealing with Out-of-Vocabulary Terms

Define a special OOV or “unknown” symbol unk. Transform some
(or all) rare words in the training data to unk.

/ You cannot fairly compare two language models that apply different
unk transformations!

Build a language model at the character level.
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Our Universe, For Now

We will focus on probabilistic language models with a fixed, finite
vocabulary V.

Training will start from the maximum likelihood principle.

Training data is x = ⟨x1, . . . , xN ⟩ and we evaluate perplexity on test data
x̄ = ⟨x̄1, . . . , x̄N̄ ⟩.
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A First Language Model

p(x) =
count(x)

N

21 / 109



A First Language Model

p(x) =
count(x)

N

What if x̄ is not (in) the training data?
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A First Language Model

p(x) =
count(x)

N

If we think of the training data as multiple sequences, the issue remains.
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Using the Chain Rule

p(X = x) =


p(X1 = x1)
· p(X2 = x2 | X1 = x1)
· p(X3 = x3 | X1:2 = x1:2)
...
· p(XN = 8 | X1:N−1 = x1:N−1)


=

N∏
i=1

p(Xi = xi | X1:i−1 = x1:i−1)

The game is to “summarize” the history well enough to predict each word
in turn.
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Unigram Model: Empty History

p(X = x) =

N∏
i=1

p(Xi = xi | X1:i−1 = x1:i−1)

assumption
=

N∏
i=1

p(Xi = xi;θ) =

N∏
i=1

θxi

Maximum likelihood estimate: for every v ∈ V,

θ∗v =

∑N
i=1 1 {xi = v}

N

=
countx(v)

N

A full derivation is given at the end of the slides.
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Example

The probability of

Presidents tell lies .

is:

p(X1 = Presidents) · p(X2 = tell) · p(X3 = lies) · p(X4 = .) · p(X5 = 8)

In unigram model notation:

θPresidents · θtell · θlies · θ. · θ8

Using the maximum likelihood estimate for θ, we could calculate:

countx(Presidents)

N
· countx(tell)

N
· · · countx(8)

N
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Reflection

Consider a unigram model that is completely agnostic; it assigns θv = 1
V

for all v ∈ V.

What will its perplexity be? Hint: as long as the test data is restricted to
words in V, the test data doesn’t matter!
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Unigram Models: Assessment

Pros:

Easy to understand

Cheap

Good enough for information
retrieval (maybe)

Cons:

Fixed, known vocabulary
assumption

“Bag of words” assumption is
linguistically inaccurate

p(the the the the) ≫
p(I want ice cream)
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Aperitif: Markov Models ≡ n-gram Models

p(X = x) =

N∏
i=1

p(Xi = xi | X1:i−1 = x1:i−1)

assumption
=

N∏
i=1

p(Xi = xi | Xi−n+1:i−1 = xi−n+1:i−1;θ)

=

N∏
i=1

θxi|xi−n+1:i−1

(n− 1)th-order Markov assumption ≡ n-gram model

Unigram model is the n = 1 case

For a long time, trigram models (n = 3) were widely used

5-gram models (n = 5) were common in MT for a time
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Reflection

What is the maximum likelihood estimate for the n-gram model’s
probability of v given a (n− 1)-length history h?
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Solution

θv|h = p(Xi = v | Xi−n+1:i−1 = h)

=
p(Xi = v,Xi−n+1:i−1 = h)

p(Xi−n+1:i−1 = h)

=
countx(hv)

N

/
countx(h)

N

=
countx(hv)

countx(h)

A common mistake is to forget that θv|h is a conditional probability and
estimate the joint probability p(hv) instead.
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Reflection

Given a sequence of words, what procedure would you use to calculate its
n-gram probability? To make this procedure as fast as possible, what
properties would you want for the data structure that stores θ?
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Choosing n is a Balancing Act

If n is too small, your model can’t learn very much about language.

As n gets larger:

The number of parameters grows with O(V n).

Most n-grams will never be observed, so you’ll have lots of zero
probability n-grams. This is an example of data sparsity.

Your model depends increasingly on the training data; you need (lots)
more data to learn to generalize well.

This is a beautiful illustration of the bias-variance tradeoff.
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Language Modeling Research in a Nutshell

a language model increase training data
(larger N)

reduced test perplexity

increase model capacity
(e.g., larger n)

better fit to training data

improve inductive bias

more parameters

better generalization

better performance in applications advance knowledge

increased computational cost

? ?

??

?
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Smoothing: Attempts to Improve Inductive Bias

The game: prevent θv|h = 0 for any v and h, while keeping
∑

x p(x) = 1
so that perplexity stays meaningful.

Simple method: add λ > 0 to every count (including counts of zero)
before normalizing (the textbook calls this “Lidstone” smoothing)

Longstanding champion: modified Kneser-Ney smoothing (?)

Reasonable, easy solution when you don’t care about perplexity:
stupid backoff (?)
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Hyperparameters

After we choose a general technical approach, there are often
“micro-decisions” in execution that affect perplexity, task performance,
etc. E.g., n, or λ in Lidstone smoothing. We call these hyperparameters.
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Hyperparameters

After we choose a general technical approach, there are often
“micro-decisions” in execution that affect perplexity, task performance,
etc. E.g., n, or λ in Lidstone smoothing. We call these hyperparameters.

Hyperparameters are usually scientifically “uninteresting,” and we don’t
have a priori reasons to inform our choices.

Solution: try different values, and choose one using a validation dataset.

Never the training set, because you want hyperparaemeter values that
generalize well.

Never the test set, because that’s cheating!

Better solution: tune them using a systematic and replicable search
procedure; report this procedure. See ?.
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n-gram Models: Assessment

Pros:

Easy to understand

Cheap (with modern hardware;
?)

Fine in some applications and
when training data is scarce

Cons:

Fixed, known vocabulary
assumption

Markov assumption is
linguistically inaccurate

(But not as bad as unigram
models!)

Data sparseness problem
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The Main Dish
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Neural Language Models

Instead of a lookup for a word and fixed-length history (θv|h), define a
vector function:

p(Xi | X1:i−1 = x1:i−1) = NN(enc(x1:i−1);θ)

where θ do the work of encoding the history and transforming it into a
distribution over the next word.
The transformation is described as a composed series of simple
transformations or “layers.”
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What is a Neural Network?

Like many things from machine learning, the name invites confusion.

Formally, it’s a function NN from θ (learned parameters) and inputs to
outputs, all of which are real-valued vectors (or matrices, or tensors, or
collections of them).

Almost always, NN is differentiable with respect to θ and nonlinear with
respect to the data input.

“Nonlinear” means there does not exist a matrix A such that
NN(v;θ) = Av, for all v.
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What is a Neural Network?

Like many things from machine learning, the name invites confusion.

Formally, it’s a function NN from θ (learned parameters) and inputs to
outputs, all of which are real-valued vectors (or matrices, or tensors, or
collections of them).

Almost always, NN is differentiable with respect to θ and nonlinear with
respect to the data input.

“Nonlinear” means there does not exist a matrix A such that
NN(v;θ) = Av, for all v.

For a neural language model:

We need an encoder that maps word histories h to vectors/matrices.

We interpret the output as p(Xi | X1:i−1 = h).
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NLM v. 0: MLR

?, among others
If you let MLR’s label set be V, then you can reduce language modeling to
training an MLR model on N instances (one per word).
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NLM v. 0: MLR

?, among others
If you let MLR’s label set be V, then you can reduce language modeling to
training an MLR model on N instances (one per word).

Note that the instances will not be independent, so it’s a bit different
from the classification setup.

48 / 109



NLM v. 0: MLR

?, among others
If you let MLR’s label set be V, then you can reduce language modeling to
training an MLR model on N instances (one per word).

49 / 109



NLM v. 0: MLR

?, among others
If you let MLR’s label set be V, then you can reduce language modeling to
training an MLR model on N instances (one per word).

The MLR probability function is differentiable with respect to θ (its
weights).

50 / 109



NLM v. 0: MLR

?, among others
If you let MLR’s label set be V, then you can reduce language modeling to
training an MLR model on N instances (one per word).

The MLR probability function is differentiable with respect to θ (its
weights).

Remember, though, that to do this, you need to decide what features of
h and each candidate next word to use.

51 / 109



NLM v. 0: MLR

?, among others
If you let MLR’s label set be V, then you can reduce language modeling to
training an MLR model on N instances (one per word).

The MLR probability function is differentiable with respect to θ (its
weights).

Remember, though, that to do this, you need to decide what features of
h and each candidate next word to use.

These models were usually called “maximum entropy” (not neural)
language models, and the computational cost made them largely
impractical in the 1990s.

52 / 109



NLM v. 0: MLR

?, among others
If you let MLR’s label set be V, then you can reduce language modeling to
training an MLR model on N instances (one per word).

The MLR probability function is differentiable with respect to θ (its
weights).

Remember, though, that to do this, you need to decide what features of
h and each candidate next word to use.

These models were usually called “maximum entropy” (not neural)
language models, and the computational cost made them largely
impractical in the 1990s.

For training, we moved from specialized algorithms to generic convex
optimization to SGD.
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Reflection

Recalling what you know about multinomial logistic regression, what do
you think made them impractical for realistic language modeling?
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Multinomial Logistic Regression

If you understand the principles, it’s easier to learn the models to come.
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Why So Many Models?

We’re going to see a lot of neural network approaches to language
modeling.

Just like MLR, which has been used extensively to solve many problems,
the general ideas used in the series of models shown here have been used
across NLP.
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Two Key Developments

1 “Embedding” words as vectors.

2 Layering to increase capacity (i.e., the set of distributions that can be
represented).

Same as before: we run stochastic (sub)gradient descent algorithms to
maximize likelihood.

Different form before: likelihood is not necessarily convex in θ.
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“One Hot” Vectors

Let ei ∈ RV be the ith column of the identity matrix I.

e1 =


1
0
...
0
0

 ; e2 =


0
1
...
0
0

 ; . . . ; eV =


0
0
...
0
1



ei is the “one hot” vector for the ith word in V.
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“One Hot” Vectors

Let ei ∈ RV be the ith column of the identity matrix I.

e1 =


1
0
...
0
0

 ; e2 =


0
1
...
0
0

 ; . . . ; eV =


0
0
...
0
1


ei is the “one hot” vector for the ith word in V.

A neural language model starts by “looking up” each word by multiplying
its one hot vector by a matrix M

V × d

; e⊤v M = mv, the “embedding” of v.

M becomes part of the parameters (θ).
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Sequences of Word Vectors

Given a word sequence ⟨v1, v2, . . . , vk⟩, we transform it into a sequence of
word vectors,

mv1 ,mv2 , . . . ,mvk

Using neural networks in NLP requires decisions about how to deal with
variable-length input.
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Adding Layers

Neural networks are built by composing functions, a mix of

affine, v′ = Wv + b (note that the dimensionality of v and v′ might
be different)

nonlinearity, including softmax (which we saw in the MLR lecture),
elementwise hyperbolic tangent

v′i = tanh(vi) =
evi − e−vi

evi + e−vi
,

and rectified linear (“relu”) units, v′i = max(0, vi).
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Adding Layers

Neural networks are built by composing functions, a mix of

affine, v′ = Wv + b (note that the dimensionality of v and v′ might
be different)

nonlinearity, including softmax (which we saw in the MLR lecture),
elementwise hyperbolic tangent

v′i = tanh(vi) =
evi − e−vi

evi + e−vi
,

and rectified linear (“relu”) units, v′i = max(0, vi).

The typical pattern is affine, nonlinear, affine, nonlinear, . . .

More layers ⇒ increased capacity (more parameters, more computational
cost, better training data fit)
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Language Modeling Research in a Nutshell

a language model increase training data
(larger N)

reduced test perplexity

increase model capacity
(e.g., larger n)

better fit to training data

improve inductive bias

more parameters

better generalization

better performance in applications advance knowledge

increased computational cost

? ?

??

?
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NLM v. 1: Feedforward

(?) Define the n-gram probability as follows:

p(· | h1, . . . , hn−1) =

softmax

(
b
V

+

n−1∑
j=1

mhj

d

Aj
d × V

+ W
V × H

tanh

(
u
H

+

n−1∑
j=1

m⊤
hj

T j
d × H︸ ︷︷ ︸

affine

)

︸ ︷︷ ︸
nonlinearity︸ ︷︷ ︸

affine

)

︸ ︷︷ ︸
nonlinearity

Parameters θ include M and everything in pink.

Hyperparameters: dimensionalities d and H
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Feedforward NLM Computation Graph
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Interpretation?

It’s a bit like an MLR language model with two kinds of “features”:

Concatenation of context-word embeddings vectors mhj
(but these

“word feature” vectors are themselves learned, not fixed in advance)

tanh-affine transformation of the above

New parameters arise from (i) embeddings and (ii) affine transformations.

No single parameter will have any intuitive meaning.
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Number of Parameters

D = V d︸︷︷︸
M

+ V︸︷︷︸
b

+(n− 1)dV︸ ︷︷ ︸
A

+ V H︸︷︷︸
W

+ H︸︷︷︸
u

+(n− 1)dH︸ ︷︷ ︸
T

For ?, V ≈ 18000 (after OOV processing); d ∈ {30, 60}; H ∈ {50, 100};
n− 1 = 5. So D = 461V + 30100 parameters, compared to O(V n) for
classical n-gram models.

Forcing A = 0 eliminated 300V parameters and performed a bit
better, but training was slower to converge.

If we averaged mhj
instead of concatenating, we’d get to

221V + 6100 (this is a variant of “continuous bag of words,” ?; see
also the log-bilinear model in extra slides).
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Why does it work?

Historical answer: multiple layers and nonlinearities allow feature
combinations a linear model can’t get.

Suppose we want y = xor(x1, x2); this can’t be expressed as a linear
function of x1 and x2.
With high-dimensional inputs, there are a lot of conjunctive features to
search through. For MLR-style models, ? attempted this, greedily.
Neural models seem to smoothly explore lots of
approximately-conjunctive features.

Modern answer: representations of words and histories are tuned,
simultaneously, to the prediction problem.

Word embeddings: a powerful idea!
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Reminders about Training

Good news: apply maximum likelihood principle and SGD as with MLR
(v. 0). Lots more details in ? section 3.3 and ?.

Bad news:

Log-likelihood function is not convex.

So any perplexity experiment is evaluating the model, the initial value
of θ (usually random), and an algorithm for estimating it.

Calculating log-likelihood and its gradient is very expensive (5 epochs
took 3 weeks on 40 CPUs).
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Observations about NLMs (So Far)

There’s no knowledge built in that the most recent word hn−1 is
“closer” than earlier ones; it must be learned (probably learnable?).

Hyperparameters: in addition to choosing n, also have to choose
dimensionalities d and H.

Parameters of these models are mostly hard to interpret.

Architectures are not especially intuitive.

Impressive perplexity gains got people’s interest.
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Observations about NLMs (So Far)

There’s no knowledge built in that the most recent word hn−1 is
“closer” than earlier ones; it must be learned (probably learnable?).

Hyperparameters: in addition to choosing n, also have to choose
dimensionalities d and H.

Parameters of these models are mostly hard to interpret.

Example: ℓ2-norm of Aj,∗,∗ and T j,∗,∗ in the feedforward model
correspond to the importance of history position j.
Individual word embeddings can be clustered and dimensions can be
analyzed (e.g., ?).

Architectures are not especially intuitive.

Impressive perplexity gains got people’s interest.
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Feedforward Networks

Like MLR, but more layers and harder to understand.

79 / 109



Neural Networks for Sequences

A feedforward network is fine if our input is bounded in length and we
believe each position comprises its own features.

That’s not really how language works, though; there’s nothing special
about (for example) “the word four positions back.”

It also doesn’t scale to longer sequences well (consider parameters
specifically tied to the 974th word of a document).

It also doesn’t capture the way words tend to combine locally (e.g.,
with their neighbors) to form bigger meanings (compositionality).

What follows are three families or styles of networks that reuse parameters
to encode sequences of arbitrary length.
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NLM v. 2: Convolutional Networks (Sliding Windows)

Consider the entire history for word t, h = ⟨x1, x2, . . . , xt−1⟩ (no Markov
assumption).

Start with X(0) =
[
mx1 ;mx2 ; . . . ;mxt−1

]
.

We will define a new matrix, X(ℓ), at each layer of the network, by
applying a convolution function to the matrix X(ℓ−1). The vector
X(ℓ)[∗,m] can be considered a “hidden state” representation of history
word m at layer ℓ.
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Convolution Layers

A convolution layer applies a feedforward-like “affine + nonlinear” sliding
window function across the input matrix, at each position.

X(1)[k,m] = f

bk +

d∑
i=1

w∑
j=1

C(k)[i, j] ·X(0)[i,m+ j − 1]



f is a nonlinearity (like tanh). w is the width of the sliding window. Each
k is a different “filter” and each m is a word position.

Hyperparameters: number of layers, and, at every layer, f , w, number of
filters
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Convolutional Network, Illustrated

embeddings, mxi

X(1)
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Convolutional Network, Illustrated

embeddings, mxi

X(1)

X(D)

convolution

convolutions

pooling
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Convolutional Network: Pooling

Let the dimensionality of the last (Dth) layer be dout .

Pooling takes X(D) ∈ Rdout×(t−1) and maps it into Rdout .

Two standard options (with no additional parameters) are max pooling,

zk = max
j

X(D)[k, j];

and average pooling,

zk =
1

t− 1

t−1∑
j=1

X(D)[k, j].

Finally, softmax(z) gives a probability distribution over outputs.
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Reflection

Consider the computations required for encoding the history of word xt
and the history of word xt+1. Do you see a way to make training efficient
that wouldn’t have been available for the feedforward NLM?
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Historical and Practical Notes

Convolutional neural networks originated in computer vision; similar ideas
emerged in speech recognition.

Seminal use of convolutional networks for text classification: ?. Example
use in language modeling: ?.

Dilated convolutional networks use longer “strides” at deeper levels,
skipping over increasingly more of the words, allowing effectively longer
windows; see ? and discussion in your textbook.
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Convolutional Networks

An import from computer vision, often touted for their speed.
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NLM v. 3: Recurrent Neural Network

?

Again, no Markov assumption; the history for word t is
h = ⟨x1, x2, . . . , xt−1⟩, mapped to ⟨mx1 ,mx2 , . . . ,mxt−1⟩.
The history is encoded as a fixed-length “state” vector, st−1.

p(· | x1:(t−1)) = yt = softmax
(
s⊤t−1U

)
si = sigmoid

(
m⊤

xi
A+ s⊤i−1B + c

)
s0 = 0

Note the recurrence.

The “depth” of the network corresponds to the position in the sequence
(here, t).
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Computation Graph: RNN
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Visualization
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Improvements to RNN Language Models

The simple RNN is known to suffer from two related problems:

“Vanishing gradients” during learning make it hard to propagate error
into the distant past.

State tends to change a lot on each iteration; the model “forgets” too
much.

Some variants:

“Stacking” the functions to make deeper networks, feeding the
output of one in as the input to the next.

? use “long short-term memories” (LSTMs, ?; see ?) and ? use
“gated recurrent units” (GRUs) to define the recurrence.
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Recurrent Networks

Established the dominance of neural models in NLP, strongest option for
many settings for several years.
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Taking Stock

Four NLMs so far:

v. architecture

0 multinomial logistic regression

1 feedforward neural network

2 convolutional neural network

3 recurrent neural network
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None of these were designed specifically for language modeling, though
arguably they are increasingly “language savvy” in their handling of
sequences.
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Four NLMs so far:

v. architecture

0 multinomial logistic regression

1 feedforward neural network

2 convolutional neural network

3 recurrent neural network

None of these were designed specifically for language modeling, though
arguably they are increasingly “language savvy” in their handling of
sequences.
Also increasingly expensive.
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Taking Stock

Four NLMs so far:

v. architecture

0 multinomial logistic regression

1 feedforward neural network

2 convolutional neural network

3 recurrent neural network

The last model, v. 4, is called the “transformer” (?).
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High-Level View of Transformer Language Models

The transformer was originally devised for machine translation, but it’s
also been used to build some “famous” language models like GPT-3 (?).

The architecture is designed to exploit the specific parallelization
capabilities of GPU hardware.

Intuition: at each layer ℓ, update the ith word’s vector by taking a
weighted average of other words’ vectors (in the last layer):

x
(ℓ)
i =

∑
j

αi,jx
(ℓ−1)
j

αi,∗ = softmax(polynomial( x
(ℓ−1)
1 , . . . ,x(ℓ−1)

n︸ ︷︷ ︸
previous layer’s output

))

Detailed walk-through of the original architecture can be found in ?.
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Scaled Dot-Product Attention

At each layer, every word has a key, value, and query vector, with lengths
dk, dv, and dk.

We score how well a key k matches query q by:

q · k√
dk

Taking a softmax of scores across keys, we get the “attention” that should
be paid to each key k’s associated value, denoted αq,k.

Finally, we weight the values by their respective keys’ attention values:∑
i αq,ivi
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Attention Writ Large

Imagine we have a lot of queries; we can stack them into a matrix Q.
Similarly for keys K and values V . Think of attention as:

a(Q,K,V ) = softmax

(
Q⊤K√

dk

)
V
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Attention Writ Large

Imagine we have a lot of queries; we can stack them into a matrix Q.
Similarly for keys K and values V . Think of attention as:

a(Q,K,V ) = softmax

(
Q⊤K√

dk

)
V

Now imagine that we have a collection of separately-parameterized
attention functions (each with its own vectors for the queries, keys, and
values). These are called heads, and they operate in parallel; the result is
multi-head attention.

Think of multi-head attention as:

mha(Q,K,V ) = concatenatehi=1

(
a(QWQ

i ,KWK
i ,V W V

i ))
)
WO
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Self-Attention

Though (multi-head) attention has been used in a variety of ways, the one
most relevant to use today is called self-attention.
The ith self-attention layer does the following:

Create the keys, values, and queries by linearly transforming the
representation of the sequence from the previous layer, X(i−1):
Kj = UK

j X(i−1),Qj = UQ
j X

(i−1),Vj = UV
j X

(i−1) (for each head
j).

Pass those through the multi-head self-attention layer to get new
representations of each word, X(i).
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Multiple Layers

Multi-head self-attention forms one layer; it takes vectors for words and
gives back new vectors for the same words.

It’s usually interleaved with feedforward layers that transform each word’s
vector locally (independent of other words).

At the very end, the vector at each position goes through a softmax to get
a distribution over the next word. For language modeling, therefore, it’s
critical that words only attend to preceding words! This is accomplished
during training by “masking out” future words (if j > i, then each
layer/head’s αi,j is forced to zero).

106 / 109



Observation

Apart from masking to avoid cheating, the sequential nature of the words
is lost.

If you scramble the first i− 1 words, the distribution for word i will be
unchanged!

“Positional embeddings” are deterministic vector functions of a word’s
position that are added to mxi at the very start of computation.
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Feedforward Redux

We ditched feedforward networks (v. 1) earlier, because they assume
fixed-width input.

Self-attention-based models actually tend to be used with a max-length
history, but it’s quite long (hundreds of words).

In some sense, this means self-attention networks are really just a very
wide kind of feedforward network!
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Transformer
Vaswani et al., 2017

Designed to exploit resources (data, hardware), essentially “feedforward”
inside.
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