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Outline

© Review of Last Lecture
© Multiclass Classification
© Neural Nets

@ Convolutional neural networks (ConvNets/CNNs)
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Outline

© Review of Last Lecture
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Review of Last Lecture

Linear classifiers

Linear models for binary classification:
Step 1. Model is the set of separating hyperplanes

F={f(z) = sgn(w"z) | w € R"}
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Review of Last Lecture

Linear classifiers

Step 2. Pick the surrogate loss

@ perceptron 10ss Lperceptron(2) = max{0, —z} (used in Perceptron)
@ hinge loss lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss logistic(2) = log(1+ exp(—z)) (used in logistic regression)

5/ 67



Review of Last Lecture

Linear classifiers

Step 3. Find empirical risk minimizer (ERM):

w”* = argmin F(w) = argmin — Z ((ypwTx,)

weRP weRP
using
e GD: w4+ w—nVEF(w)
e SGD:  w + w — nVF(w) (E[VF(w)] = VF(w))

o Newton: w <+ w — (V2F(w))_1 VF(w)
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Convergence guarantees of GD/SGD

e GD/SGD converges to a stationary point
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Convergence guarantees of GD/SGD

e GD/SGD converges to a stationary point

@ for convex objectives, this is all we need
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Convergence guarantees of GD/SGD

e GD/SGD converges to a stationary point
@ for convex objectives, this is all we need

@ for nonconvex objectives, can get stuck at local minimizers or “bad”
saddle points (random initialization escapes “good” saddle points)

“good” saddle points “bad” saddle points
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Review of Last Lecture

Perceptron and logistic regression
Initialize w = 0 or randomly.

Repeat:
@ pick a data point x,, uniformly at random (common trick for SGD)
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Review of Last Lecture

Perceptron and logistic regression
Initialize w = 0 or randomly.

Repeat:
@ pick a data point x,, uniformly at random (common trick for SGD)

@ update parameter:

W e w -+ ]I[yanwnTS 0lyny (Per.ce.ptron) |
No(—YnW " Tr)YnTn (logistic regression)
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Review of Last Lecture

A Probabilistic view of logistic regression

Minimizing logistic loss = MLE for the sigmoid model

N N
w™ = argmin Z&ogistic(yanmn) = argmax H Py, | Tn;w)
w n=1 n=1
where 1
. — Ty — _
Ply | zw) = o(yw a) = 1 g
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Outline

© Multiclass Classification
@ Multinomial logistic regression
@ Reduction to binary classification

10 / 67



Multiclass Classification

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]
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Multiclass Classification

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

Examples:
e recognizing digits (C = 10) or letters (C = 26 or 52)
@ predicting weather: sunny, cloudy, rainy, etc
e predicting image category: ImageNet dataset (C ~ 20K)

Nearest Neighbor Classifier naturally works for arbitrary C.
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?
Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

f(m):{1 if wle >0

2 ifwfz <0
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

1 ifwfz >0
2 ifwfz <0

f(z)

can be written as
fla) = 1 if wim > w%m
2 fwyx >wizx

for any wi,ws s.t. w = w; — wq
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

f(m):{1 if wle >0

2 ifwfz <0

can be written as

T

1 ifwle>wlx
2 ifwiz>wix

= argmax wg:c
ke{1,2}

for any wi,ws s.t. w = w; — wq
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?
Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})
1 ifwlz>0
-]

2 ifwfz <0

can be written as

T

fl@) = 1 ifwimeQTa:
2 fwyx >wizx

= argmax wg:c
ke{1,2}

for any wi,ws s.t. w = w; — wq
Think of wlz as a score for class k.
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

— @ Blue class:
{x:wrz >0}
1 ] ° :
{z:wTz <0}
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass
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@ Blue class:

{x: 1 = argmax;, w; =}
° ;
{x : 2 = argmax;, w] =}
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

w1 = (1*%)

@ Blue class:

{x: 1 = argmax;, w] =}
° ;

{x : 2 = argmax, wlx}
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

wi = (l—%)
N 1 ws = (0,1)

@ Blue class:

{x : 1 = argmax, wlz}
° ;
: 1 {z : 2 = argmax;, wiz}

@ Green class:

{x : 3 = argmax;, wlx}
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Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =< f(x) = argmax wix | wi,...,wc € RP
kelC]
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Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

f

f(x) = argmax wix | wi,..., wc € RP
ke[C]

f(x) = argmax (W), | W € ROP
ke[C]

15 / 67



Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =< f(x) = argmax wix | wi,...,wc € RP
kelC]

={ f(x) = argmax (W), | W € RSP
ke[C]

Step 2: How do we generalize perceptron/hinge/logistic loss?
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Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =< f(x) = argmax wix | wi,...,wc € RP
kelC]

= { f(x) = argmax (Wz), | W € R“P
ke[C]

Step 2: How do we generalize perceptron/hinge/logistic loss?

This lecture: focus on the more popular logistic loss
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Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 — wy:

T ) _ 1 B ewle

T
_ wix

—wTe wie wlx e
1+e eWi® | W3

Ply=1|z;w) =0c(w
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Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 — wy:

T
1 ewi® T
P(y:1|x;w):0(wT ): T, T T oc L ®
1+67wz €w1w+ew2w
Naturally, for multiclass:
Wi T T
kec) € ¥
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Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 — wy:

T
1 ewi® T
P(y:1|x;w):0(wT ): T, T T oc L ®
1+67wz €w1w+ew2w
Naturally, for multiclass:
Wi T T
kec) € ¥

This is called the softmax function.
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Multinomial logistic regression
Applying MLE again

Maximize probability of seeing labels y1,...,yn given ®1,..., &N

N N

POW) = T Plyn | 2 W) = ]|

'lUTw
ne=1 a1 Dkelc) €T

T
eWyn Tn

17 / 67



Multinomial logistic regression
Applying MLE again

Maximize probability of seeing labels y1,...,yn given ®1,..., &N
N N R
PW) = [[Pyn | @; W) = H—wTwn
n=1 nl 2kelc) €

By taking negative log, this is equivalent to minimizing

- ()

€ Yn
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Multinomial logistic regression
Applying MLE again

Maximize probability of seeing labels y1,...,yn given ®1,..., &N
N N R
PW) = [[Pyn | @; W) = H—wTwn
n=1 nl 2kelc) €

By taking negative log, this is equivalent to minimizing

Zl (Zkewqemnk ) Zln 1+Zewk Wy, ) Te,

k#yn

This is the multiclass logistic loss, a.k.a. cross-entropy loss.

When C = 2, this is the same as binary logistic loss.
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ST (e e
Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W) =In|1+ Z e(wk/*“’yn)Tzn ?
K #yn
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Multinomial logistic regression
Step 3: Optimization
Apply SGD: what is the gradient of

Fn(W) =In|1+ Z e(wk/*wyn)Tzn ?
K #yn

It's a C x D matrix. Let's focus on the k-th row:

If k& # yn:

e(wk —Wyp )Twn

ngFn(W) = 11 Zk,¢yn e(’wk/—wyn)Tmn

T
L
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Multinomial logistic regression
Step 3: Optimization
Apply SGD: what is the gradient of
Fo(W)=In[14 Y elww—wm)ien |7
K #yn

It's a C x D matrix. Let's focus on the k-th row:

If k& # yn:

e(wk —Wyp )Twn

L T, T

Vur Fa(W) zl =Pk |z, W)z!

n
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ST (e e
Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W) =In|1+ Z e(wk/*wyn)Twn ?
K #yn

It's a C x D matrix. Let's focus on the k-th row:

If k& # yn:
(wk_wyn)Twn
e
E, W)= T P(k n, w T

ng W) L4+ sy e(Wy —wy, )T Tn Tn (k| @ W),

else:
— Zk’ ; e(wk’_wyn)Twn

V. Fu(W) = (ea ):L-T

1+ Zk/¢y e(wk,_wyn)Twn "
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ST (e e
Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W) =In|1+ Z e(wk/*wyn)Twn ?
K #yn

It's a C x D matrix. Let's focus on the k-th row:

If k& # yn:
('wk_'wyn)chn
e
F,(W) = TPk | p; W)x!
ng W) L4+ sy e(Wy —wy, )T Tn Tn (k| @ W),
else:
— Zk’ ; e(wk’_wyn)Twn
Vot Fn(W) = ( iy ) n=Pyn | zn; W) - 1)z,

1+ Zk'#yn e(wk’_wyn)Twn Ln
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Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

@ pick n € [N] uniformly at random
@ update the parameters

P(y:1|mn§w)
WeW-—n| Ply=yn | zns W) -1

Ply=C|ax,;, W)

39
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Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

@ pick n € [N] uniformly at random
@ update the parameters

Ply=1|zn; W)

39

WW-—n| Py=yn |z W) -1 |z
Ply=C|ax,;, W)

Think about why the algorithm makes sense intuitively.
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Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wiz
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Having learned W, we can either

© make a deterministic prediction argmaxycc wiz

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy [ 1+ pwr—wy)T@
k#y

@ randomized
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Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wiz

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy [ 1+ pwr—wy)T@
k#y

@ randomized
EIlf(x) #yl] =1-P(y |z W)
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Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wiz

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy [ 1+ pwr—wy)T@
k#y

@ randomized

Ellf(z) #y]l =1-P(y | ;W) < —InP(y | &; W)
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Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?
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Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

Given a binary classification algorithm (any one, not just linear methods),
can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.
e one-versus-all (one-versus-rest, one-against-all, etc.)
@ one-versus-one (all-versus-all, etc.)

Error-Correcting Output Codes (ECOC)

tree-based reduction
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Multiclass Classification Reduction to binary classification

One-versus-all (OVA) (picture credit: link)

Idea: train C binary classifiers to learn "“is class k£ or not?" for each k.

22 / 67


http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Multiclass Classification Reduction to binary classification

One-versus-all (OVA) (picture credit: link)
Idea: train C binary classifiers to learn "“is class k£ or not?" for each k.

Training: for each class k € [C],
@ relabel examples with class k as +1, and all others as —1

@ train a binary classifier hj using this new dataset
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Multiclass Classification Reduction to binary classification

One-versus-all (OvA)

Idea: train C binary classifiers to learn "“is class k£ or not?" for each k.

Training: for each class k € [C],
@ relabel examples with class k as +1, and all others

@ train a binary classifier hj using this new dataset

as —1

(picture credit: link)

| | O
X1 X1 X1 X1 X1
x N X2 X2 X2 X2
x3 B = | x3 X3 X3 X3
X4 X4 X4 X4 X4
X5 | X5 X5 X5 X5

4 4 4 Y

hy hy h3 hy
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Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example x

@ ask each hy: does this belong to class k7 (i.e. hi(x))
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Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example x
@ ask each hy: does this belong to class k7 (i.e. hi(x))

e randomly pick among all k's s.t. hgx(x) = +1.
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Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example x
@ ask each hy: does this belong to class k7 (i.e. hi(x))

e randomly pick among all k's s.t. hgx(x) = +1.

Issue: will (probably) make a mistake as long as one of hy, errs.
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Multiclass Classification Reduction to binary classification

One-versus-one (OvO) (picture credit: link)

Idea: train (g) binary classifiers to learn “is class k or k'?".
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Multiclass Classification Reduction to binary classification

One-versus-one (OvO) (picture credit: link)
Idea: train (g) binary classifiers to learn “is class k or k'?".

Training: for each pair (k, k'),
@ relabel examples with class k as +1 and examples with class &’ as —1
@ discard all other examples

e train a binary classifier iy, ;) using this new dataset
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Multiclass Classification Reduction to binary classification

One-versus-one (OvO) (picture credit: link)
Idea: train (g) binary classifiers to learn “is class k or k'?".

Training: for each pair (k, k),
@ relabel examples with class k as +1 and examples with class &’ as —1
@ discard all other examples

e train a binary classifier iy, ;) using this new dataset

M vs. Myvs. B | Wvs W | Wvs. Mvs. B | Hvs.
X1 X1 X1 X1
x> N X2 Xo + X2 +
x3 W = X3 x3 + | x3
X4 X4 X4 X4
x; W x5 + | x5 + X5 +

2 3 3 4 3 3
ha,) a3 h3.4) h12) h14) hs2)
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Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x

e ask each classifier (3 1) to vote for either class £ or K
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Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x
e ask each classifier (3 1) to vote for either class £ or K

@ predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.
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Multiclass Classification Reduction to binary classification

Error-correcting output codes (ECOC) (picture credit: link)

Idea: based on a code M € {—1,+1}°*L, train L binary classifiers to
learn “is bit b on or off".

M|1 2 3 4 5
m| + +
+ + +
|+ +
m+ + + +
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Reduction to binary classification
Error-correcting output codes (ECOC)

Idea: based on a code M € {—1,+1}*L, train L binary

learn “is bit b on or off".

Training: for each bit b € [L]

(picture credit: link)

classifiers to

M |1 3 5
o relabel example x;, as M, ; ot T +
- -
@ train a binary classifier hy using |+
this new dataset. m| o+ +
1 2 4 5
X1 X1 X1 X1 + X1 X1
xo MW Xo + | X X2 X2 X2
x3 B = | x3 +|X3 X3 + | X3 X3
X4 Xq Xy X4 + | Xa X4
x; W X5 4+ | X5 X5 4+ | Xs X5
3 U \ U
h1 hy ha hs

26 / 67


http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x

e compute the predicted code ¢ = (hi(x),...,h (x))T
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Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x
e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax; (M c);

How to design the code M7

@ the more dissimilar the codes, the more robust

o if any two codes are d bits away, then prediction can tolerate about d/2
errors

@ random code is often a good choice

27 / 67



Reduction to binary classification
Tree based method

Idea: train &~ C binary classifiers to learn “belongs to which half?".
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Idea: train &~ C binary classifiers to learn “belongs to which half?".

Training: see pictures

= = [ 3 [ o hy
X1 X1 + | X1 | Vs n
x N X X2+ [ |
x3 W = | x3 X3
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Idea: train &~ C binary classifiers to learn “belongs to which half?".

Training: see pictures

= = [ 3 [ o hy
X1 X1+ | X1 | . |
x N X X + [ |
x3 W = | x3 X3
X4 X4 + | Xa / \
x; M X5 + | X5 4 h2 h3

Prediction is also natural,
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Reduction to binary classification
Tree based method

Idea: train &~ C binary classifiers to learn “belongs to which half?".

Training: see pictures

= = [ 3 [ o hy
X1 X1+ | X1 | . |
x N X X + [ |
x3 W = | x3 X3
X4 X4 + | Xa / \
x; M X5 + | X5 4 h2 h3

Prediction is also natural, but is very fast! (think ImageNet where
C ~ 20K)

28 / 67



Multiclass Classification Reduction to binary classification

Comparisons

training prediction

Reduction . .
time time

remark

training time: how many
training points are created

prediction time: how many
binary predictions are made
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time time
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Multiclass Classification Reduction to binary classification

Comparisons
Reduction tra.mmg preqlctlon remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error

training time: how many

training points are created

prediction time: how many

binary predictions are made

H W vs. Mys. B | Hvs W | Wvs. Wvs. W | Wvs.
X1 X1 X1 X1
x M X2 po X2
x3 W = X3 X3 + X3
X4 X4 X4 X4
x5 W x5 + | x5 + X5 +
1 4 I 1 1

has I hia hoy hs2)
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Reduction tra'ining preqiction remark
time time
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Comparisons

Reduction tra_ining prec_liction remark
time time
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OovO (C—1)N 0(C?) can achieve very small training error
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Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra_ining prec_liction remark
time time
OvA CN C not robust
OovO (C—1)N 0(C?) can achieve very small training error
ECOC LN L need diversity when designing code
Tree O((logz CO)N) | O(log, C) gooA far “avtrama rlaccification”

training time: how many

training points are created

prediction time: how many
binary predictions are made

[ IO
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Outline

© Neural Nets
@ Definition
@ Backpropagation
@ Preventing overfitting
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Linear models are not always adequate
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We can use a nonlinear mapping as discussed:

o)z e RP — z ¢ RM

31/ 67



Linear models are not always adequate

B R N U SR e 20
e
A e ey Y
VS I Rt 1
| PR deanEE W
Sty
sar, LAl
. P R N A 05, * B
+oaieh + + R LI
ot wtnt of .o .
1 Wl H .
B e ST
B R T F o, L ]
ST A N L
PR e 0 )
LI SRR E
23| bt g T
15
4
05 0 05 1 15 2 205 15 10 05 0.0 05 10 15 20

We can use a nonlinear mapping as discussed:

o)z e RP — z ¢ RM

But what kind of nonlinear mapping ¢ should be used? Can we actually
learn this nonlinear mapping?
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We can use a nonlinear mapping as discussed:

o)z e RP — z ¢ RM

But what kind of nonlinear mapping ¢ should be used? Can we actually
learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets
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Neural Nets Definition

Linear model as a one-layer neural net

h(a) = a for linear model
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Neural Nets Definition

Linear model as a one-layer neural net

h(a) = a for linear model

To create non-linearity, can use
@ Rectified Linear Unit (ReLU): h(a) = max{0,a}

@ sigmoid function: h(a) = H%

a

e TanH: h(a) = 22;2;

@ many more
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Neural Nets Definition

More output nodes

I

L2 o=h(Wz)

T3

w

W e RS, bR o R so h(a) = (hi(a1), ha(az), ha(as), ha(aa))
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Neural Nets Definition

More output nodes

T

Z2 o=h(Wx)
T3

w

W e RS, bR o R so h(a) = (hi(a1), ha(az), ha(as), ha(aa))

Can think of this as a nonlinear mapping: ¢(x) = h(Wx)
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More layers

Becomes a network:
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Neural Nets Definition

More layers

Becomes a network:

each node is called a neuron it ayer hodenlayer1  hddenlaer2  outputlayer

h is called the activation function
e can use h(a) =1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) = a

#layers refers to #hidden_layers (plus 1 or 2 for input/output layers)

deep neural nets can have many layers and millions of parameters

@ this is a feedforward, fully connected neural net, there are many
variants (convolutional nets, residual nets, recurrent nets, etc.)

34 / 67



Neural Nets Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.
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Neural Nets Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

o for feedforward network, need to decide number of hidden layers,
number of neurons at each layer, activation functions, etc.

35 / 67



Math formulation

An L-layer neural net can be written as

F(x)=hL(Wrhi 1 (Wp_1---hy (Wiz)))
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Neural Nets Definition

Math formulation

An L-layer neural net can be written as

F(x)=hL(Wrhi 1 (Wp_1---hy (Wiz)))

input layer hidden layer 1 hidden layer 2 output layer

To ease notation, for a given input x, define recursively

o) = &, ay = WgOg_l, Oy — hg(ag) (f = 1, PN L)
where
o W, € RPexDPe-1 is the weights between layer £ — 1 and /¢
e Dy =D,Dy,...,DL are numbers of neurons at each layer
e ay € RP! is input to layer ¢
e oy € RP¢ is output of layer ¢
e hy: RPr — RDP¢ js activation functions at layer £
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Learning the model

No matter how complicated the model is, our goal is the same: minimize

N

1
F(Wl,...,WL):NZFn(Wl,...,WL)

n=1
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Neural Nets Definition

Learning the model

No matter how complicated the model is, our goal is the same: minimize

N
1
F(Wy,...,W) = NZFn(Wl,...,WL)
n=1

where

I f(zn) — ynll3 for regression
F,(Wy,..., W) = I

(W1 L {ln (1 + D ktyn ef(“”")k*f(m")yn> for classification
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How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.
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How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:
e for a composite function f(g(w))
of _9f9g
ow  0g Ow

e for a composite function f(g1(w),...,gq(w))

f _ <~ 0f dgi
ow

i=1 dgi Ow
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How to optimize such a complicated function?
Same thing: apply SGD! even if the model is nonconvex.
What is the gradient of this complicated function?
Chain rule is the only secret:

e for a composite function f(g(w))

of _0fog
ow  0g Ow

e for a composite function f(g1(w),...,gq(w))

0f _ -~ 01 05
ow P dg; Ow
the simplest example f(g1(w), ga(w)) = g1(w)ga(w)

38 / 67



Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F, w.r.t. to w;;
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Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F, w.r.t. to w;;

8Fn o 8Fn 6@1' o GFn 8(wijoj) . 8Fn
8w¢j N Ga,» Gwij - 8ai 8w1~j 6&1'
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Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F, w.r.t. to w;;

8Fn o 8Fn 6@1' o GFn 8(wijoj) . 8Fn

8w¢j N Ga,» Gwij 8ai 8w1~j - 6&1' Oj
OF, OF, do,
8@2' N 802' 8@2'
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Neural Nets Backpropagation

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F), w.r.t. to w;;

8Fn o 8Fn 6@1' o GFn 8(wijoj) . 8Fn0‘
8w¢j N Gai Gwij - 6(11- 8w1~j - 6ai J

oF, 0F,0o; Z OF, Oay, )
da;  Do; da; Oay, 80 i(ai
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Neural Nets Backpropagation

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F), w.r.t. to w;;

8Fn o 8Fn 6@1' o GFn 8(wijoj) . 8Fn0‘
8w¢j N Gai Gwij - 6(11- 8w1~j - 6ai J

oF,  0F, do; OF,, Oay, B OF, \.,
oa; N do; Oa; <Z Oday, Do; ) a;) = ( - day, wkl) hi(al)
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Computing the derivative

Adding the subscript for layer:

oF, _ OF,
aw&ij 8&(71'

i | heilaei
3% (Z aam,cw“lv’f) vi(ae;)

O¢—1,5
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Neural Nets Backpropagation

Computing the derivative

Adding the subscript for layer:

OF,  OF,
Owyi;  Oag;

i | hoiac
8% (Z aag+1kwe+1,k) vilacs)

For the last layer, for square loss

OF, _ O(hii(aL:) — Yn.i)?
Oay ; day ;

O¢—1,5
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Neural Nets Backpropagation

Computing the derivative

Adding the subscript for layer:

oF, _ OF,
aw&ij 8&(71'

i | heilaei
8a“ (Z aag+1kwe+1,k) vilae)

For the last layer, for square loss

O, _ olhiilons) ~ e |
- 7 ) : =2(h % i) — 7 h i i
aaL,i 804_,1. ( L, (CLL, ) Yn, ) L, (CLL, )

O¢—1,5
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Neural Nets Backpropagation

Computing the derivative

Adding the subscript for layer:

oF, _ OF,
aw&ij 8%1-

i | heilaei
8a“ (Z aag+1kw£+1,k) vilae)

For the last layer, for square loss

OF, _ O(huiaLs) — yns)® ,
- 7 ) : =2(h % i) — Yn, h i i
da day ; (hii(aL:) — yna)hi i(aLs)

O¢—1,5

Exercise: try to do it for logistic loss yourself.
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Neural Nets Backpropagation

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

OF, OF, o7
oW,  da, 1

e RPexDe—1

dagt1

oF, B <W£1 Ol ) [ hlg(ag) if ¢ <L
2(hi(aL) — yn) o h{ (aL) else

6ag

where v1 0 v = (v11V21, -+ , U1pV2p) IS the element-wise product (a.k.a.
Hadamard product).

Verify yourself!
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Backpropagation
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W7y, ..., W randomly.
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Backpropagation
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W randomly. Repeat:

@ randomly pick one data point n € [N]

@ forward propagation: for each layer / =1,...,L
e compute ay = Wyoy_1 and oy = hy(ay) (0p = x,)

© backward propagation: foreach {=1L,... 1
e compute

oF, {(W@T+1 o5 )ohy(a) ifl<L
2

Oagy
day (hi(aL) —yn) o hl(ay) else

e update weights

OF, OF,

W[ < W[ — naWe = W[ — 7’]870,[0@71
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Backpropagation
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W randomly. Repeat:

@ randomly pick one data point n € [N]

@ forward propagation: for each layer / =1,...,L
o compute ay = Wyoy—1 and oy = hy(ay) (0p = x,)

© backward propagation: foreach {=1L,... 1
e compute

oF, _ [(Whi ) omia)  ifr<L
aae (hL(a’L) yn) o hf_(a,_) else
e update weights

OF, OF,
Tow, = W' Tga, Ot

(Important: should W, be overwritten immediately in the last step?)

Wy« W, —
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More tricks to optimize neural nets

Many variants based on Backprop
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Neural Nets Backpropagation

More tricks to optimize neural nets

Many variants based on Backprop

@ mini-batch: randomly sample a batch of examples to form a
stochastic gradient (common batch size: 32, 64, 128, etc.)

@ batch normalization: normalize the inputs of each neuron over the
mini-batch (to zero-mean and one-variance; c.f. Lec 1)

e momentum: make use of previous gradients (taking inspiration from
physics)
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SGD with momentum (a simple version)

Initialize wg and velocity v =0
Fort=1,2,...
e form a stochastic gradient g;
@ update velocity v « aw + g; for some discount factor « € (0,1)

@ update weight wy + w;_1 — nv
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Neural Nets Backpropagation

SGD with momentum (a simple version)

Initialize wg and velocity v =0
Fort=1,2,...
e form a stochastic gradient g;
@ update velocity v « aw + g; for some discount factor « € (0,1)

@ update weight wy + w;_1 — nv

Updates for first few rounds:
® wi; = wo — Ngi
¢ Wy = w1 —ang: — 1Ng2
o w3 = wy — a’ng1 — angs — g3
@ .-
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Preventing overfitting
Overfitting

Overfitting is very likely since neural nets are too powerful.

Methods to overcome overfitting:

data augmentation
regularization
dropout

early stopping
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Neural Nets Preventing overfitting

Data augmentation

Data: the more the better. How do we get more data?
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Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data

Affine . Elastic
Distortion Noise Deformation

Horizontal Random

flip Translation Hue Shit
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\ETEIMNSEI  Preventing overfitting

Regularization

L2 regularization: minimize

L
F'(Wh,...,W) =F(Wy,..., W) + 2> |[Wil3
=1
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\ETEIMNSEI  Preventing overfitting

Regularization

L2 regularization: minimize
L
F'(Wy,..., W) = F(Wy,...,WL) + XY [[W]3

Simple change to the gradient:

OF' oF
(?ww 811)%]

+ 2 w;;

47 / 67



\ETEIMNSEI  Preventing overfitting

Regularization

L2 regularization: minimize

L
F'(Wh,...,W) =F(Wy,..., W) + 2> |[Wil3

Simple change to the gradient:

OF' oF
8wi] 811)%]

+ 2 w;;

Introduce weight decaying effect
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Neural Nets Preventing overfitting

Dropout

Independently delete each neuron with a fixed probability (say 0.5),
during each iteration of Backprop (only for training, not for testing)

Q——
ANe7ANe7A

.

Very effective, makes training faster as well
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Preventing overfitting
Early stopping

Stop training when the performance on validation set stops improving

/ Early stopping
0.20

T T T
e—e Training set loss
0.15 — Validation set loss |
0.10 4 -
2 0.05 - a
0.00
0 50 100 150 200 250

Time (epochs)
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Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks

@ are hugely popular, achieving best performance on many problems
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Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems
@ do need a /ot of data to work well
@ take a /ot of time to train (need GPUs for massive parallel computing)
@ take some work to select architecture and hyperparameters

@ are still not well understood in theory
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Convolutional neural networks (ConvNets/CNNs)

Outline

@ Convolutional neural networks (ConvNets/CNNs)
@ Motivation
@ Architecture
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Convolutional neural networks (ConvNets/CNNs)

Acknowledgements

Not much math, a lot of empirical intuitions
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Convolutional neural networks (ConvNets/CNNs)

Acknowledgements

Not much math, a lot of empirical intuitions

The materials borrow heavily from the following sources:
e Stanford Course CS231n: http://cs231n.stanford.edu/

@ Dr. lan Goodfellow's lectures on deep learning:
http://deeplearningbook.org

Both website provides tons of useful resources: notes, demos, videos, etc.
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Image Classification: A core task in Computer Vision

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

- cat

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture2- 6 April 6, 2017




The Problem: Semantic Gap

104 99106 99 06103 112 119 104 97 03 87)
106104 79 98 103 99 105 123 136 110 105
[76 85 50 105 128 105 87 96 95 99 115 112 106 103
(99 81 81 93 127100 95 98102 99 96 93
(106 o1 85 101107 109 98 75 84
(114 108 6 54 63 87112120 98 74
(133 137 8 65 52 5¢ 74 84102 3
(126 137 8 70 62 65 63 63 60 73
(125 133 117 94 65 79 80 65 54 64
i 1127 125 126131111 9 89 75 61 64
(115 114 131116 113 100 100 92 74 65
% ('8 131 116 113 11¢ 113 109 106 95 77 80
(63 77 102 123 117 115 117 125 125 130 115 87)
(62 65 80 101 124 126 119 101 107 114 131 119]
63 65 62 81120 138 135 105 81 98 110 118
(57 65 45 76130 126 107 92 94 105 112]
(118 o7 106 66 41 51 95 93 89 95 102 107)
(164 146 124104 76 48 45 66 68 101 102 109)
(157 170 114132112 97 69 55 70 B2 9 94
(130 128 109 118 121 136 114 87 65 53 69 86)
(126 112 120 115 104 107 102 93 87 81 72 79)
1123 107 153 149 122 109 104 75 80 107 112 99)
(122 121 s 94 117 145 148 153 102 58 78 92 107)
(122 164 148 103 71 56 78 83 93 103 119 139 102 61 69 84])

What the computer sees

An image is just a big grid of
numbers between [0, 255]:

e.g. 800 x 600 x 3
hisimage by Nita (3 channels RGB)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture2- 7 April 6, 2017




Challenges: Viewpoint variation

All pixels change when
the camera moves!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture2- 8 April 6, 2017




Challenges: lllumination

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture2- 9 April 6, 2017




Challenges: Deformation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2- 10 April 6, 2017




Challenges: Occlusion

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 11 April 6, 2017




Challenges: Background Clutter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 12 April 6, 2017




Challenges: Intraclass variation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 13 April 6, 2017




Convolutional neural networks (ConvNets/CNNs) Motivation

Fundamental problems in vision

The key challenge
How to train a model that can tolerate all those variations?
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Convolutional neural networks (ConvNets/CNNs) Motivation

Fundamental problems in vision

The key challenge
How to train a model that can tolerate all those variations?

Main ideas
@ need a lot of data that exhibits those variations

@ need more specialized models to capture the invariance
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Convolutional neural networks (ConvNets/CNNs) Motivation

Issues of standard NN for image inputs

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
P Wz
1l Y < S—
3072 x 3072 /4 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-27  April 18, 2017
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Convolutional neural networks (ConvNets/CNNs) Motivation

Issues of standard NN for image inputs

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
P Wz
1l Y < S—
3072 x 3072 /4 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-27  April 18, 2017

Spatial structure is lost!
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Metivation
Solution: Convolutional Neural Net (ConvNet/CNN)

A special case of fully connected neural nets
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Convolutional neural networks (ConvNets/CNNs) Motivation
Solution: Convolutional Neural Net (ConvNet/CNN)

A special case of fully connected neural nets

@ usually consist of convolution layers, RelLU layers, pooling layers,
and regular fully connected layers

@ key idea: learning from low-level to high-level features

ELU RELU RELU RELU RELU RELU
CONV lCONVl CONVlCONVl CONVlCONVl

}
[ [

¢

aifplane
Bhip
ITworse
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Convolutional neural networks (ConvNets/CNNs) AV TidadITE

Convolution layer

Arrange neurons as a 3D volume naturally

Convolution Layer

32x32x3 image -> preserve spatial structure

7

32 height

32 width
3 depth

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 28

April 18, 2017
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Convolutional neural networks (ConvNets/CNNs) [AVge e diTe

Convolution

2D Convolution

Input

a

Kernel

i Output

~— (filter/receptive field)

a + bz w o+ e aw + dr
ey + fz fy + gz gy + hz
ew + fx fw + gz gw + hz
W+ gz v+ kz ky + Iz
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Convolution Layer

32x32x3 image

/ 5x5x3 filter

32 L
II Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 29 April 18, 2017




CO nVOI Utlon Layer Filters always extend the full

. depth of the input volume
32x32x3 image /
/ 5x5x3 filter
32 7
II Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 30 April 18, 2017




Convolution Layer

32x32x3 image

/
/ . 5x5x3 filter w

™~ 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

wlz +b

S

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 31 April 18, 2017




Convolution Layer

activation map

__— 32x32x3 image
/ 2 5x5x3 filter /

convolve (slide) over all
spatial locations

32 28

28

o |
-_—

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 32 April 18, 2017




Convolution Layer consider a second, green filter

_— 32x32x3 image activation maps
/ . 5x5x3 filter %

convolve (slide) over all
spatial locations

32 28

28

o |
BN

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 33 April 18, 2017




For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

7

32
3

32

Convolution Layer

activation maps

28

We stack these up to get a “new image” of size 28x28x6!

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 34

28

April 18, 2017




Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

A A

CONV,
RelLU
eg.6
5x5x3
filters

32 28

3 6

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 35 April 18, 2017




Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

A A A

CONvV, CONvV, CONV,
RelLU RelLU RelLU
eg.6 e.g. 10
5x5x3 5x5x6

|| 32 filters L | 28 filters 24

3 6 10

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 36 April 18, 2017




Convolutional neural networks (ConvNets/CNNs) AV TidadITE

Why convolution makes sense?

Main idea: if a filter is useful at one location, it should be useful at
other locations.
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Convolutional neural networks (ConvNets/CNNs) Architecture

Why convolution makes sense?

Main idea: if a filter is useful at one location, it should be useful at
other locations.

A simple example why
filtering is useful

Kernel
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Convolutional neural networks (ConvNets/CNNs) AV TidadITE

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:
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Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:

o filter = weights with sparse connection
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Local Receptive Field Leads to
Sparse Connectivity (affects less)
Spar

comecions () @ @ @ O
due to small
convolution

suliliogo} oo

Dense
connections




Sparse connectivity: being

Sparse
connections
due to small
convolution

kernel

affected by less

Dense
connections

Figure 9.3

oooooooooooooooo



Convolutional neural networks (ConvNets/CNNs) AV TidadITE

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:

o filter = weights with sparse connection

@ parameters sharing
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Parameter Sharing

Convolution @ @ @
shares the same

parameters
across all spatial
locations

ololo
-l OSORO
ojojo

multiplication
does not share
any parameters

F | g ure 9 . 5 (Goodfellow 2016)



Convolutional neural networks (ConvNets/CNNs) [AVge e diTe

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:
o filter = weights with sparse connection
o parameters sharing

Much fewer parameters! Example (ignore bias terms):
o FC: (32 x32x3) x (28 x28) ~24M

@ CNN: 5x5x3=175
32x32x3 image

5x5x3 filter
32

28

convolve (slide) over all
spatial locations
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(s
Spatial arrangement: stride and padding

A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-42  April 18, 2017
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7

7X7 input (spatially)
assume 3x3 filter
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A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3x3 filter
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A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 45 April 18, 2017




A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3x3 filter

=> 5x5 output

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 46 April 18, 2017




A closer look at spatial dimensions:

7
7X7 input (spatially)

assume 3x3 filter
applied with stride 2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 47 April 18, 2017




A closer look at spatial dimensions:

7
7X7 input (spatially)

assume 3x3 filter
applied with stride 2
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A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 49 April 18, 2017



A closer look at spatial dimensions:

7
7X7 input (spatially)

assume 3x3 filter
applied with stride 3?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 50 April 18, 2017




A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3x3 filter
applied with stride 3?

7 doesn’t fit!
cannot apply 3x3 filter on
7X7 input with stride 3.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 51 April 18, 2017



Fei-Fei Li & Justin Johnson & Serena Yeung

Output size:
(N - F) / stride +1

eg.N=7,F=3:
stride1=>(7-3)/1+1=5
stride2=>(7-3))2+1=3
stride 3=>(7-3)/3+1=2.33:\

Lecture 5-52  April 18, 2017




In practice: Common to zero pad the border

0/0[0|0|O

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

o|lo| o| o

(recall:)
(N - F)/ stride + 1

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 53 April 18, 2017




In practice: Common to zero pad the border

0[0]0]0]0 e.g. input 7x7

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

o|lo| o| o

7x7 output!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 54 April 18, 2017




In practice: Common to zero pad the border

0[0]0]0]0 e.g. input 7x7

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

o|lo| o| o

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F =5 => zero pad with 2

F =7 => zero pad with 3

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 55 April 18, 2017




Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

A A A

CONV, CONV, CONV,
RelLU RelLU RelLU
e.g.6 e.g. 10
5x5x3 5x5x6

32 filters 28 filters 24

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 56 April 18, 2017




Convolutional neural networks (ConvNets/CNNs) AV TidadITE

Summary for convolution layer

Input: a volume of size W1 x Hy x Dy
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Convolutional neural networks (ConvNets/CNNs) Architecture

Summary for convolution layer

Input: a volume of size W1 x Hy x Dy

Hyperparameters:

o K filters of size F' x F

@ stride S

@ amount of zero padding P (for one side)
Output: a volume of size Wy x Hy X Dy where

o Wy =

e Hy =

e Dy =
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Hyperparameters:
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Hyperparameters:
o K filters of size F' x F
@ stride S

@ amount of zero padding P (for one side)

Output: a volume of size Wy x Hy X Dy where
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e Hy=(H+2P-F)/S+1
e Dy =
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Summary for convolution layer
Input: a volume of size W1 x Hy x Dy

Hyperparameters:
o K filters of size F' x F
@ stride S

@ amount of zero padding P (for one side)

Output: a volume of size Wy x Hy X Dy where
o Wo= W1 +2P—-F)/S+1
e Hy=(H+2P-F)/S+1
e Dhy=K

#parameters: (F x F' x Dy 4+ 1) x K weights
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Convolutional neural networks (ConvNets/CNNs) [AVge e diTe

Summary for convolution layer
Input: a volume of size W1 x Hy x Dy

Hyperparameters:
o K filters of size F' x F
@ stride S

@ amount of zero padding P (for one side)

Output: a volume of size Wy x Hy X Dy where
o Wo= W1 +2P—-F)/S+1
e Hy=(H+2P-F)/S+1
e Dhy=K

#parameters: (F x F' x Dy 4+ 1) x K weights

Common setting: F=3,5=P =1
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 57 April 18, 2017



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 58 April 18, 2017




Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 59 April 18, 2017



Examples time:

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params  (+1 for bias)
=>76%10 =760

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 60 April 18, 2017




Convolutional neural networks (ConvNets/CNNs) AV TidadITE

Another element: pooling

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

112x112x64

pool

e

}

— > [ 112
224 downsampling .
112

224

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 -72 April 18, 2017
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Convolutional neural networks (ConvNets/CNNs) AV TidadITE
Pooling

Similar to a filter, except

@ depth is always 1
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Convolutional neural networks (ConvNets/CNNs) Architecture
Pooling

Similar to a filter, except

@ depth is always 1
o different operations: average, L2-norm, max
@ no parameters to be learned

Max pooling with 2 x 2 filter and stride 2 is very common

MAX POOLING
Single depth slice
X 111124
max pool with 2x2 filters
5|6 |78 and stride 2 6 |8
312(1]0 3|4
1123 |4
y
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(s
Putting everything together

Typical architecture for CNNs:

Input — [[Conv — ReLU]*N — Pool?]*M — [FC — RelLU]*Q — FC J
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Putting everything together
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Input — [[Conv — ReLU]*N — Pool?]*M — [FC — RelLU]*Q — FC

Common choices: N <5,Q <2, M is large
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Architecture
Putting everything together

Typical architecture for CNNs:

Input — [[Conv — ReLU]*N — Pool?]*M — [FC — RelLU]*Q — FC J

Common choices: N <5,Q <2, M is large

Well-known CNNs: LeNet, AlexNet, ZF Net, GooglLeNet, VGGNet, etc.

All achieve excellent performance on image classification tasks.
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Convolutional neural networks (ConvNets/CNNs) Architecture

How to train a CNN?

How do we learn the filters/weights?
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Architecture
How to train a CNN?

How do we learn the filters/weights?

Essentially the same as FC NNs: apply SGD /backpropagation
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