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Outline

1 Review of Last Lecture

2 Multiclass Classification

3 Neural Nets

4 Convolutional neural networks (ConvNets/CNNs)
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Review of Last Lecture

Linear classifiers

Linear models for binary classification:

Step 1. Model is the set of separating hyperplanes

F = {f(x) = sgn(wTx) | w ∈ RD}

4 / 67



Review of Last Lecture

Linear classifiers

Step 2. Pick the surrogate loss

perceptron loss ℓperceptron(z) = max{0,−z} (used in Perceptron)

hinge loss ℓhinge(z) = max{0, 1− z}(used in SVM and many others)

logistic loss ℓlogistic(z) = log(1+ exp(−z)) (used in logistic regression)
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Review of Last Lecture

Linear classifiers

Step 3. Find empirical risk minimizer (ERM):

w∗ = argmin
w∈RD

F (w) = argmin
w∈RD

1

N

N∑
n=1

ℓ(ynw
Txn)

using

GD: w ← w − η∇F (w)

SGD: w ← w − η∇̃F (w) (E[∇̃F (w)] = ∇F (w))

Newton: w ← w −
(
∇2F (w)

)−1∇F (w)
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Review of Last Lecture

Convergence guarantees of GD/SGD

GD/SGD converges to a stationary point

for convex objectives, this is all we need

for nonconvex objectives, can get stuck at local minimizers or “bad”
saddle points (random initialization escapes “good” saddle points)

“good” saddle points “bad” saddle points
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Review of Last Lecture

Perceptron and logistic regression

Initialize w = 0 or randomly.

Repeat:

pick a data point xn uniformly at random (common trick for SGD)

update parameter:

w ← w +

{
I[ynwTxn ≤ 0]ynxn (Perceptron)

ησ(−ynwTxn)ynxn (logistic regression)
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Review of Last Lecture

A Probabilistic view of logistic regression

Minimizing logistic loss = MLE for the sigmoid model

w∗ = argmin
w

N∑
n=1

ℓlogistic(ynw
Txn) = argmax

w

N∏
n=1

P(yn | xn;w)

where

P(y | x;w) = σ(ywTx) =
1

1 + e−ywTx
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Multiclass Classification

Outline

1 Review of Last Lecture

2 Multiclass Classification
Multinomial logistic regression
Reduction to binary classification

3 Neural Nets

4 Convolutional neural networks (ConvNets/CNNs)
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Multiclass Classification

Classification

Recall the setup:

input (feature vector): x ∈ RD

output (label): y ∈ [C] = {1, 2, · · · ,C}
goal: learn a mapping f : RD → [C]

Examples:

recognizing digits (C = 10) or letters (C = 26 or 52)

predicting weather: sunny, cloudy, rainy, etc

predicting image category: ImageNet dataset (C ≈ 20K)

Nearest Neighbor Classifier naturally works for arbitrary C.
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {−1,+1} to {1, 2})

f(x) =

{
1 if wTx ≥ 0

2 if wTx < 0

can be written as

f(x) =

{
1 if wT

1 x ≥ wT
2 x

2 if wT
2 x > wT

1 x

= argmax
k∈{1,2}

wT
k x

for any w1,w2 s.t. w = w1 −w2

Think of wT
k x as a score for class k.
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

w = (32 ,
1
6)

= w1 −w2

w1 = (1,−1
3)

w2 = (−1
2 ,−1

2)

Blue class:
{x : wTx ≥ 0}
Orange class:
{x : wTx < 0}
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

w1 = (1,−1
3)

w2 = (−1
2 ,−1

2)
w3 = (0, 1)

Blue class:
{x : 1 = argmaxk w

T
k x}

Orange class:
{x : 2 = argmaxk w

T
k x}

Green class:
{x : 3 = argmaxk w

T
k x}
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Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =

{
f(x) = argmax

k∈[C]
wT

k x | w1, . . . ,wC ∈ RD

}

=

{
f(x) = argmax

k∈[C]
(Wx)k |W ∈ RC×D

}

Step 2: How do we generalize perceptron/hinge/logistic loss?

This lecture: focus on the more popular logistic loss
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Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 −w2:

P(y = 1 | x;w) = σ(wTx) =
1

1 + e−wTx
=

ew
T
1 x

ew
T
1 x + ew

T
2 x
∝ ew

T
1 x

Naturally, for multiclass:

P(y = k | x;W ) =
ew

T
k x∑

k′∈[C] e
wT

k′x
∝ ew

T
k x

This is called the softmax function.
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Multiclass Classification Multinomial logistic regression

Applying MLE again

Maximize probability of seeing labels y1, . . . , yN given x1, . . . ,xN

P (W ) =

N∏
n=1

P(yn | xn;W ) =

N∏
n=1

ew
T
yn

xn∑
k∈[C] e

wT
k xn

By taking negative log, this is equivalent to minimizing

F (W ) =

N∑
n=1

ln

(∑
k∈[C] e

wT
k xn

ew
T
ynxn

)

=

N∑
n=1

ln

1 +
∑
k ̸=yn

e(wk−wyn )
Txn


This is the multiclass logistic loss, a.k.a. cross-entropy loss.

When C = 2, this is the same as binary logistic loss.
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Multiclass Classification Multinomial logistic regression

Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W ) = ln

1 +
∑
k′ ̸=yn

e(wk′−wyn )
Txn

?

It’s a C× D matrix. Let’s focus on the k-th row:

If k ̸= yn:

∇wT
k
Fn(W ) =

e(wk−wyn )
Txn

1 +
∑

k′ ̸=yn
e(wk′−wyn )

Txn
xT
n = P(k | xn;W )xT

n

else:

∇wT
k
Fn(W ) =

−
(∑

k′ ̸=yn
e(wk′−wyn )

Txn

)
1 +

∑
k′ ̸=yn

e(wk′−wyn )
Txn

xT
n = (P(yn | xn;W )− 1)xT

n
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Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

1 pick n ∈ [N] uniformly at random

2 update the parameters

W ←W − η


P(y = 1 | xn;W )

...
P(y = yn | xn;W )− 1

...
P(y = C | xn;W )

xT
n

Think about why the algorithm makes sense intuitively.
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Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W , we can either

make a deterministic prediction argmaxk∈[C] w
T
k x

make a randomized prediction according to P(k | x;W ) ∝ ew
T
k x

In either case, (expected) mistake is bounded by logistic loss

deterministic

I[f(x) ̸= y] ≤ log2

1 +
∑
k ̸=y

e(wk−wy)Tx


randomized

E [I[f(x) ̸= y]]

= 1− P(y | x;W ) ≤ − lnP(y | x;W )
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Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

Given a binary classification algorithm (any one, not just linear methods),
can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.

one-versus-all (one-versus-rest, one-against-all, etc.)

one-versus-one (all-versus-all, etc.)

Error-Correcting Output Codes (ECOC)

tree-based reduction
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Multiclass Classification Reduction to binary classification

One-versus-all (OvA) (picture credit: link)

Idea: train C binary classifiers to learn “is class k or not?” for each k.

Training: for each class k ∈ [C],

relabel examples with class k as +1, and all others as −1
train a binary classifier hk using this new dataset

22 / 67
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Multiclass Classification Reduction to binary classification

One-versus-all (OvA)

Prediction: for a new example x

ask each hk: does this belong to class k? (i.e. hk(x))

randomly pick among all k’s s.t. hk(x) = +1.

Issue: will (probably) make a mistake as long as one of hk errs.
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Multiclass Classification Reduction to binary classification

One-versus-one (OvO) (picture credit: link)

Idea: train
(C
2

)
binary classifiers to learn “is class k or k′?”.

Training: for each pair (k, k′),

relabel examples with class k as +1 and examples with class k′ as −1
discard all other examples

train a binary classifier h(k,k′) using this new dataset
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Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x

ask each classifier h(k,k′) to vote for either class k or k′

predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.
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Multiclass Classification Reduction to binary classification

Error-correcting output codes (ECOC) (picture credit: link)

Idea: based on a code M ∈ {−1,+1}C×L, train L binary classifiers to
learn “is bit b on or off”.

Training: for each bit b ∈ [L]

relabel example xn as Myn,b

train a binary classifier hb using
this new dataset.
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Multiclass Classification Reduction to binary classification

Error-correcting output codes (ECOC)

Prediction: for a new example x

compute the predicted code c = (h1(x), . . . , hL(x))
T

predict the class with the most similar code: k = argmaxk(Mc)k

How to design the code M?

the more dissimilar the codes, the more robust

if any two codes are d bits away, then prediction can tolerate about d/2
errors

random code is often a good choice
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Multiclass Classification Reduction to binary classification

Tree based method

Idea: train ≈ C binary classifiers to learn “belongs to which half?”.

Training: see pictures

Prediction is also natural, but is very fast! (think ImageNet where
C ≈ 20K)
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Multiclass Classification Reduction to binary classification

Comparisons

Reduction
training
time

prediction
time

remark

OvA CN C not robust

OvO (C− 1)N O(C2) can achieve very small training error

ECOC LN L need diversity when designing code

Tree O((log2 C)N) O(log2 C) good for “extreme classification”

training time: how many

training points are created

prediction time: how many
binary predictions are made
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Neural Nets

Outline

1 Review of Last Lecture

2 Multiclass Classification

3 Neural Nets
Definition
Backpropagation
Preventing overfitting

4 Convolutional neural networks (ConvNets/CNNs)
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Neural Nets Definition

Linear models are not always adequate

We can use a nonlinear mapping as discussed:

ϕ(x) : x ∈ RD → z ∈ RM

But what kind of nonlinear mapping ϕ should be used? Can we actually
learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets
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Neural Nets Definition

Linear model as a one-layer neural net

h(a) = a for linear model

To create non-linearity, can use

Rectified Linear Unit (ReLU): h(a) = max{0, a}
sigmoid function: h(a) = 1

1+e−a

TanH: h(a) = ea−e−a

ea+e−a

many more
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Neural Nets Definition

More output nodes

W ∈ R4×3, h : R4 → R4 so h(a) = (h1(a1), h2(a2), h3(a3), h4(a4))

Can think of this as a nonlinear mapping: ϕ(x) = h(Wx)
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Neural Nets Definition

More layers

Becomes a network:

each node is called a neuron

h is called the activation function
can use h(a) = 1 for one neuron in each layer to incorporate bias term
output neuron can use h(a) = a

#layers refers to #hidden layers (plus 1 or 2 for input/output layers)

deep neural nets can have many layers and millions of parameters

this is a feedforward, fully connected neural net, there are many
variants (convolutional nets, residual nets, recurrent nets, etc.)
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Neural Nets Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

for feedforward network, need to decide number of hidden layers,
number of neurons at each layer, activation functions, etc.
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Neural Nets Definition

Math formulation

An L-layer neural net can be written as

f(x) = hL (WLhL−1 (WL−1 · · ·h1 (W1x)))

To ease notation, for a given input x, define recursively

o0 = x, aℓ = Wℓoℓ−1, oℓ = hℓ(aℓ) (ℓ = 1, . . . , L)

where

Wℓ ∈ RDℓ×Dℓ−1 is the weights between layer ℓ− 1 and ℓ

D0 = D,D1, . . . ,DL are numbers of neurons at each layer

aℓ ∈ RDℓ is input to layer ℓ

oℓ ∈ RDℓ is output of layer ℓ

hℓ : RDℓ → RDℓ is activation functions at layer ℓ
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Neural Nets Definition

Learning the model

No matter how complicated the model is, our goal is the same: minimize

F (W1, . . . ,WL) =
1

N

N∑
n=1

Fn(W1, . . . ,WL)

where

Fn(W1, . . . ,WL) =

{
∥f(xn)− yn∥22 for regression

ln
(
1 +

∑
k ̸=yn

ef(xn)k−f(xn)yn

)
for classification
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Neural Nets Backpropagation

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

for a composite function f(g(w))

∂f

∂w
=

∂f

∂g

∂g

∂w

for a composite function f(g1(w), . . . , gd(w))

∂f

∂w
=

d∑
i=1

∂f

∂gi

∂gi
∂w

the simplest example f(g1(w), g2(w)) = g1(w)g2(w)
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Neural Nets Backpropagation

Computing the derivative

Drop the subscript ℓ for layer for simplicity.

Find the derivative of Fn w.r.t. to wij

∂Fn

∂wij
=

∂Fn

∂ai

∂ai
∂wij

=
∂Fn

∂ai

∂(wijoj)

∂wij
=

∂Fn

∂ai
oj

∂Fn

∂ai
=

∂Fn

∂oi

∂oi
∂ai

=

(∑
k

∂Fn

∂ak

∂ak
∂oi

)
h′i(ai) =

(∑
k

∂Fn

∂ak
wki

)
h′i(ai)
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Neural Nets Backpropagation

Computing the derivative

Adding the subscript for layer:

∂Fn

∂wℓ,ij
=

∂Fn

∂aℓ,i
oℓ−1,j

∂Fn

∂aℓ,i
=

(∑
k

∂Fn

∂aℓ+1,k
wℓ+1,ki

)
h′ℓ,i(aℓ,i)

For the last layer, for square loss

∂Fn

∂aL,i
=

∂(hL,i(aL,i)− yn,i)
2

∂aL,i
= 2(hL,i(aL,i)− yn,i)h

′
L,i(aL,i)

Exercise: try to do it for logistic loss yourself.
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Neural Nets Backpropagation

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

∂Fn

∂Wℓ
=

∂Fn

∂aℓ
oT
ℓ−1 ∈ RDℓ×Dℓ−1

∂Fn

∂aℓ
=

{(
WT

ℓ+1
∂Fn
∂aℓ+1

)
◦ h′

ℓ(aℓ) if ℓ < L

2(hL(aL)− yn) ◦ h′
L(aL) else

where v1 ◦ v2 = (v11v21, · · · , v1Dv2D) is the element-wise product (a.k.a.
Hadamard product).

Verify yourself!
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Neural Nets Backpropagation

Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W1, . . . ,WL randomly.

Repeat:

1 randomly pick one data point n ∈ [N]

2 forward propagation: for each layer ℓ = 1, . . . , L
compute aℓ = Wℓoℓ−1 and oℓ = hℓ(aℓ) (o0 = xn)

3 backward propagation: for each ℓ = L, . . . , 1
compute

∂Fn

∂aℓ
=

{(
WT

ℓ+1
∂Fn

∂aℓ+1

)
◦ h′

ℓ(aℓ) if ℓ < L

2(hL(aL)− yn) ◦ h′
L(aL) else

update weights

Wℓ ←Wℓ − η
∂Fn

∂Wℓ
= Wℓ − η

∂Fn

∂aℓ
oT
ℓ−1

(Important: should Wℓ be overwritten immediately in the last step?)
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Neural Nets Backpropagation

More tricks to optimize neural nets

Many variants based on Backprop

mini-batch: randomly sample a batch of examples to form a
stochastic gradient (common batch size: 32, 64, 128, etc.)

batch normalization: normalize the inputs of each neuron over the
mini-batch (to zero-mean and one-variance; c.f. Lec 1)

momentum: make use of previous gradients (taking inspiration from
physics)

· · ·
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Neural Nets Backpropagation

SGD with momentum (a simple version)

Initialize w0 and velocity v = 0

For t = 1, 2, . . .

form a stochastic gradient gt

update velocity v ← αv + gt for some discount factor α ∈ (0, 1)

update weight wt ← wt−1 − ηv

Updates for first few rounds:

w1 = w0 − ηg1

w2 = w1 − αηg1 − ηg2

w3 = w2 − α2ηg1 − αηg2 − ηg3

· · ·
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Neural Nets Preventing overfitting

Overfitting

Overfitting is very likely since neural nets are too powerful.

Methods to overcome overfitting:

data augmentation

regularization

dropout

early stopping

· · ·
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Neural Nets Preventing overfitting

Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data
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Neural Nets Preventing overfitting

Regularization

L2 regularization: minimize

F ′(W1, . . . ,WL) = F (W1, . . . ,WL) + λ

L∑
ℓ=1

∥Wℓ∥22

Simple change to the gradient:

∂F ′

∂wij
=

∂F

∂wij
+ 2λwij

Introduce weight decaying effect
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Neural Nets Preventing overfitting

Dropout

Independently delete each neuron with a fixed probability (say 0.5),
during each iteration of Backprop (only for training, not for testing)

Very effective, makes training faster as well
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Neural Nets Preventing overfitting

Early stopping

Stop training when the performance on validation set stops improvingCHAPTER 7. REGULARIZATION FOR DEEP LEARNING
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Figure 7.3: Learning curves showing how the negative log-likelihood loss changes over
time (indicated as number of training iterations over the dataset, or epochs). In this
example, we train a maxout network on MNIST. Observe that the training objective
decreases consistently over time, but the validation set average loss eventually begins to
increase again, forming an asymmetric U-shaped curve.

greatly improved (in proportion with the increased number of examples for the
shared parameters, compared to the scenario of single-task models). Of course this
will happen only if some assumptions about the statistical relationship between
the different tasks are valid, meaning that there is something shared across some
of the tasks.

From the point of view of deep learning, the underlying prior belief is the
following: among the factors that explain the variations observed in the data
associated with the different tasks, some are shared across two or more tasks.

7.8 Early Stopping

When training large models with sufficient representational capacity to overfit
the task, we often observe that training error decreases steadily over time, but
validation set error begins to rise again. See figure 7.3 for an example of this
behavior. This behavior occurs very reliably.

This means we can obtain a model with better validation set error (and thus,
hopefully better test set error) by returning to the parameter setting at the point in
time with the lowest validation set error. Every time the error on the validation set
improves, we store a copy of the model parameters. When the training algorithm
terminates, we return these parameters, rather than the latest parameters. The

246

Early stopping
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Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks

are hugely popular, achieving best performance on many problems

do need a lot of data to work well

take a lot of time to train (need GPUs for massive parallel computing)

take some work to select architecture and hyperparameters

are still not well understood in theory
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Convolutional neural networks (ConvNets/CNNs)

Outline

1 Review of Last Lecture

2 Multiclass Classification

3 Neural Nets

4 Convolutional neural networks (ConvNets/CNNs)
Motivation
Architecture
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Convolutional neural networks (ConvNets/CNNs)

Acknowledgements

Not much math, a lot of empirical intuitions

The materials borrow heavily from the following sources:

Stanford Course CS231n: http://cs231n.stanford.edu/

Dr. Ian Goodfellow’s lectures on deep learning:
http://deeplearningbook.org

Both website provides tons of useful resources: notes, demos, videos, etc.
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Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Image Classification: A core task in Computer Vision

6

cat

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

This image by Nikita is 
licensed under CC-BY 2.0
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This image by Nikita is 
licensed under CC-BY 2.0

The Problem: Semantic Gap

7

What the computer sees

An image is just a big grid of 
numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)
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Challenges: Viewpoint variation

8

All pixels change when 
the camera moves!

This image by Nikita is 
licensed under CC-BY 2.0
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Challenges: Illumination

9

This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain
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Challenges: Deformation

10

This image by Umberto Salvagnin 
is licensed under CC-BY 2.0

This image by Tom Thai is 
licensed under CC-BY 2.0 

This image by sare bear is 
licensed under CC-BY 2.0

This image by Umberto Salvagnin 
is licensed under CC-BY 2.0
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Challenges: Occlusion

11

This image is CC0 1.0 public domain This image by jonsson is licensed 
under CC-BY 2.0This image is CC0 1.0 public domain
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This image is CC0 1.0 public domain

Challenges: Background Clutter

This image is CC0 1.0 public domain
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Challenges: Intraclass variation

13

This image is CC0 1.0 public domain



Convolutional neural networks (ConvNets/CNNs) Motivation

Fundamental problems in vision

The key challenge
How to train a model that can tolerate all those variations?

Main ideas

need a lot of data that exhibits those variations

need more specialized models to capture the invariance
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Convolutional neural networks (ConvNets/CNNs) Motivation

Issues of standard NN for image inputs

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201727

3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10

Spatial structure is lost!
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Convolutional neural networks (ConvNets/CNNs) Motivation

Solution: Convolutional Neural Net (ConvNet/CNN)

A special case of fully connected neural nets

usually consist of convolution layers, ReLU layers, pooling layers,
and regular fully connected layers

key idea: learning from low-level to high-level features
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Convolutional neural networks (ConvNets/CNNs) Architecture

Convolution layer

Arrange neurons as a 3D volume naturally

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201728

32

32

3

Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth
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Convolutional neural networks (ConvNets/CNNs) Architecture

Convolution

(Goodfellow 2016)

2D Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS

a b c d

e f g h

i j k l

w x

y z

aw + bx +
ey + fz
aw + bx +
ey + fz

bw + cx +
fy + gz
bw + cx +
fy + gz

cw + dx +
gy + hz
cw + dx +
gy + hz

ew + fx +
iy + jz
ew + fx +
iy + jz

fw + gx +
jy + kz
fw + gx +
jy + kz

gw + hx +
ky + lz
gw + hx +
ky + lz

Input
Kernel

Output

Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.

334

(filter/receptive field)
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32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”
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32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter
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32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6 
5x5x3 
filters
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Preview: ConvNet is a sequence of Convolutional Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24



Convolutional neural networks (ConvNets/CNNs) Architecture

Why convolution makes sense?

Main idea: if a filter is useful at one location, it should be useful at
other locations.

(Goodfellow 2016)

A simple example why 
filtering is useful

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320⇥ 280⇥ 319⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)
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Convolutional neural networks (ConvNets/CNNs) Architecture

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:

filter = weights with sparse connection
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(Goodfellow 2016)

Local Receptive Field Leads to 
Sparse Connectivity (affects less)

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x3,
and also highlight the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by x.
(Bottom)When s is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x3.
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Sparse
connections
due to small
convolution
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(Goodfellow 2016)

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s3. (Top)When s is formed by convolution with a kernel of
width 3, only three inputs affect s3. (Bottom)When s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s3.

x1x1 x2x2 x3x3

h2h2h1h1 h3h3

x4x4

h4h4

x5x5

h5h5

g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.
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Sparse connectivity: being 
affected by less

Sparse
connections
due to small
convolution

kernel

Dense
connections

Figure 9.3



Convolutional neural networks (ConvNets/CNNs) Architecture

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:

filter = weights with sparse connection

parameters sharing
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(Goodfellow 2016)

Parameter SharingCHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3 x4x4 x5x5

s2s2s1s1 s3s3 s4s4 s5s5

Figure 9.5: Parameter sharing: Black arrows indicate the connections that use a particular
parameter in two different models. (Top)The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations. (Bottom)The single black arrow indicates
the use of the central element of the weight matrix in a fully connected model. This model
has no parameter sharing so the parameter is used only once.

for every location, we learn only one set. This does not affect the runtime of
forward propagation—it is still O(k ⇥ n)—but it does further reduce the storage
requirements of the model to k parameters. Recall that k is usually several orders
of magnitude less than m. Since m and n are usually roughly the same size, k is
practically insignificant compared to m⇥n. Convolution is thus dramatically more
efficient than dense matrix multiplication in terms of the memory requirements
and statistical efficiency. For a graphical depiction of how parameter sharing works,
see figure 9.5.

As an example of both of these first two principles in action, figure 9.6 shows
how sparse connectivity and parameter sharing can dramatically improve the
efficiency of a linear function for detecting edges in an image.

In the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. To say a function is
equivariant means that if the input changes, the output changes in the same way.
Specifically, a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)).
In the case of convolution, if we let g be any function that translates the input,
i.e., shifts it, then the convolution function is equivariant to g. For example, let I
be a function giving image brightness at integer coordinates. Let g be a function
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Convolution 
shares the same 

parameters 
across all spatial 

locations

Traditional 
matrix 

multiplication 
does not share 
any parameters

Figure 9.5



Convolutional neural networks (ConvNets/CNNs) Architecture

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:

filter = weights with sparse connection

parameters sharing

Much fewer parameters! Example (ignore bias terms):

FC: (32× 32× 3)× (28× 28) ≈ 2.4M

CNN: 5× 5× 3 = 75
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Convolutional neural networks (ConvNets/CNNs) Architecture

Spatial arrangement: stride and padding

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201742

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit! 
cannot apply 3x3 filter on 
7x7 input with stride 3.
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N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\



Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201753

In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
       F = 5 => zero pad with 2
       F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0
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Remember back to… 
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24



Convolutional neural networks (ConvNets/CNNs) Architecture

Summary for convolution layer

Input: a volume of size W1 ×H1 ×D1

Hyperparameters:

K filters of size F × F

stride S

amount of zero padding P (for one side)

Output: a volume of size W2 ×H2 ×D2 where

W2 =

(W1 + 2P − F )/S + 1

H2 =

(H1 + 2P − F )/S + 1

D2 =

K

#parameters: (F × F ×D1 + 1)×K weights

Common setting: F = 3, S = P = 1
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: 
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params      (+1 for bias)

=> 76*10 = 760



Convolutional neural networks (ConvNets/CNNs) Architecture

Another element: pooling
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Pooling layer
- makes the representations smaller and more manageable 
- operates over each activation map independently:
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Convolutional neural networks (ConvNets/CNNs) Architecture

Pooling

Similar to a filter, except

depth is always 1

different operations: average, L2-norm, max
no parameters to be learned

Max pooling with 2× 2 filter and stride 2 is very common
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING
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Convolutional neural networks (ConvNets/CNNs) Architecture

Putting everything together

Typical architecture for CNNs:

Input → [[Conv → ReLU]*N → Pool?]*M → [FC → ReLU]*Q → FC

Common choices: N ≤ 5, Q ≤ 2, M is large

Well-known CNNs: LeNet, AlexNet, ZF Net, GoogLeNet, VGGNet, etc.

All achieve excellent performance on image classification tasks.
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Convolutional neural networks (ConvNets/CNNs) Architecture

How to train a CNN?

How do we learn the filters/weights?

Essentially the same as FC NNs: apply SGD/backpropagation
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