CSCI567 Machine Learning (Fall 2023)

Prof. Dani Yogatama Slide Deck from Prof. Haipeng Luo

University of Southern California

Sep 15, 2023

Outline

Multiclass Classification 2

4 Convolutional neural networks (ConvNets/CNNs)

Outline

- 2 Multiclass Classification
- 3 Neural Nets

Linear classifiers

Linear models for **binary** classification:

Step 1. Model is the set of separating hyperplanes

$$\mathcal{F} = \{f(\boldsymbol{x}) = \mathsf{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

Linear classifiers

Step 2. Pick the surrogate loss

- perceptron loss $\ell_{perceptron}(z) = \max\{0, -z\}$ (used in Perceptron)
- hinge loss $\ell_{hinge}(z) = \max\{0, 1-z\}$ (used in SVM and many others)
- logistic loss $\ell_{\text{logistic}}(z) = \log(1 + \exp(-z))$ (used in logistic regression)

Linear classifiers

Step 3. Find empirical risk minimizer (ERM):

$$\boldsymbol{w}^* = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} F(\boldsymbol{w}) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} \frac{1}{N} \sum_{n=1}^{N} \ell(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n)$$

using

- GD: $w \leftarrow w \eta \nabla F(w)$
- SGD: $\boldsymbol{w} \leftarrow \boldsymbol{w} \eta \tilde{\nabla} F(\boldsymbol{w})$ $(\mathbb{E}[\tilde{\nabla} F(\boldsymbol{w})] = \nabla F(\boldsymbol{w}))$
- Newton: $\boldsymbol{w} \leftarrow \boldsymbol{w} \left(\nabla^2 F(\boldsymbol{w})\right)^{-1} \nabla F(\boldsymbol{w})$

Convergence guarantees of GD/SGD

• GD/SGD converges to a stationary point

Convergence guarantees of GD/SGD

- GD/SGD converges to a stationary point
- for convex objectives, this is all we need

Convergence guarantees of GD/SGD

- GD/SGD converges to a stationary point
- for convex objectives, this is all we need
- for nonconvex objectives, can get stuck at local minimizers or "bad" saddle points (random initialization escapes "good" saddle points)

Perceptron and logistic regression

Initialize w = 0 or randomly.

Repeat:

• pick a data point x_n uniformly at random (common trick for SGD)

Perceptron and logistic regression

Initialize w = 0 or randomly.

Repeat:

- pick a data point x_n uniformly at random (common trick for SGD)
- update parameter:

$$oldsymbol{w} \leftarrow oldsymbol{w} + egin{cases} \mathbb{I}[y_noldsymbol{w}^{\mathrm{T}}oldsymbol{x}_n \leq 0]y_noldsymbol{x}_n \ \eta\sigma(-y_noldsymbol{w}^{\mathrm{T}}oldsymbol{x}_n)y_noldsymbol{x}_n \end{cases}$$

(Perceptron) (logistic regression)

A Probabilistic view of logistic regression

Minimizing logistic loss = MLE for the sigmoid model

$$\boldsymbol{w}^* = \operatorname*{argmin}_{\boldsymbol{w}} \sum_{n=1}^{N} \ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) = \operatorname*{argmax}_{\boldsymbol{w}} \prod_{n=1}^{N} \mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{w})$$

where

$$\mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \frac{1}{1 + e^{-y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}}$$

Outline

2 Multiclass Classification

- Multinomial logistic regression
- Reduction to binary classification

3 Neural Nets

4 Convolutional neural networks (ConvNets/CNNs)

Classification

Recall the setup:

- input (feature vector): $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$
- output (label): $y \in [\mathsf{C}] = \{1, 2, \cdots, \mathsf{C}\}$
- goal: learn a mapping $f : \mathbb{R}^{\mathsf{D}} \to [\mathsf{C}]$

Classification

Recall the setup:

- input (feature vector): $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$
- output (label): $y \in [\mathsf{C}] = \{1, 2, \cdots, \mathsf{C}\}$
- goal: learn a mapping $f : \mathbb{R}^{\mathsf{D}} \to [\mathsf{C}]$

Examples:

- recognizing digits (C = 10) or letters (C = 26 or 52)
- predicting weather: sunny, cloudy, rainy, etc
- predicting image category: ImageNet dataset (C $\approx 20K$)

Classification

Recall the setup:

- input (feature vector): $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$
- output (label): $y \in [\mathsf{C}] = \{1, 2, \cdots, \mathsf{C}\}$
- goal: learn a mapping $f : \mathbb{R}^{\mathsf{D}} \to [\mathsf{C}]$

Examples:

- recognizing digits (C = 10) or letters (C = 26 or 52)
- predicting weather: sunny, cloudy, rainy, etc
- predicting image category: ImageNet dataset (C $\approx 20K$)

Nearest Neighbor Classifier naturally works for arbitrary C.

Step 1: What should a linear model look like for multiclass tasks?

Step 1: What should a linear model look like for multiclass tasks? Note: a linear model for binary tasks (switching from $\{-1, +1\}$ to $\{1, 2\}$)

$$f(\boldsymbol{x}) = \begin{cases} 1 & \text{if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \geq 0 \\ 2 & \text{if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} < 0 \end{cases}$$

Step 1: What should a linear model look like for multiclass tasks? Note: a linear model for binary tasks (switching from $\{-1, +1\}$ to $\{1, 2\}$)

$$f(oldsymbol{x}) = egin{cases} 1 & ext{if } oldsymbol{w}^{ ext{T}}oldsymbol{x} \geq 0 \ 2 & ext{if } oldsymbol{w}^{ ext{T}}oldsymbol{x} < 0 \end{cases}$$

can be written as

$$f(oldsymbol{x}) = egin{cases} 1 & ext{if } oldsymbol{w}_1^{ ext{T}}oldsymbol{x} \geq oldsymbol{w}_2^{ ext{T}}oldsymbol{x} \ 2 & ext{if } oldsymbol{w}_2^{ ext{T}}oldsymbol{x} > oldsymbol{w}_1^{ ext{T}}oldsymbol{x} \ \end{cases}$$

for any $\boldsymbol{w}_1, \boldsymbol{w}_2$ s.t. $\boldsymbol{w} = \boldsymbol{w}_1 - \boldsymbol{w}_2$

Step 1: What should a linear model look like for multiclass tasks? Note: a linear model for binary tasks (switching from $\{-1, +1\}$ to $\{1, 2\}$)

$$f(oldsymbol{x}) = egin{cases} 1 & ext{if } oldsymbol{w}^{ ext{T}}oldsymbol{x} \geq 0 \ 2 & ext{if } oldsymbol{w}^{ ext{T}}oldsymbol{x} < 0 \end{cases}$$

can be written as

$$f(oldsymbol{x}) = egin{cases} 1 & ext{if } oldsymbol{w}_1^{ ext{T}}oldsymbol{x} \geq oldsymbol{w}_2^{ ext{T}}oldsymbol{x} \ 2 & ext{if } oldsymbol{w}_2^{ ext{T}}oldsymbol{x} > oldsymbol{w}_1^{ ext{T}}oldsymbol{x} \ = rgmax_{k \in \{1,2\}} oldsymbol{w}_k^{ ext{T}}oldsymbol{x} \end{cases}$$

for any $oldsymbol{w}_1, oldsymbol{w}_2$ s.t. $oldsymbol{w} = oldsymbol{w}_1 - oldsymbol{w}_2$

Step 1: What should a linear model look like for multiclass tasks? Note: a linear model for binary tasks (switching from $\{-1, +1\}$ to $\{1, 2\}$)

$$f(oldsymbol{x}) = egin{cases} 1 & ext{if } oldsymbol{w}^{ ext{T}}oldsymbol{x} \geq 0 \ 2 & ext{if } oldsymbol{w}^{ ext{T}}oldsymbol{x} < 0 \end{cases}$$

can be written as

$$f(oldsymbol{x}) = egin{cases} 1 & ext{if } oldsymbol{w}_1^{ ext{T}}oldsymbol{x} \geq oldsymbol{w}_2^{ ext{T}}oldsymbol{x} \ 2 & ext{if } oldsymbol{w}_2^{ ext{T}}oldsymbol{x} > oldsymbol{w}_1^{ ext{T}}oldsymbol{x} \ = rgmax_{k \in \{1,2\}} oldsymbol{w}_k^{ ext{T}}oldsymbol{x} \end{cases}$$

for any w_1, w_2 s.t. $w = w_1 - w_2$ Think of $w_k^{\mathrm{T}} x$ as a score for class k.

$$\boldsymbol{w} = (\frac{3}{2}, \frac{1}{6})$$

- Blue class: $\{ \boldsymbol{x} : \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \ge 0 \}$
- Orange class: $\{ \boldsymbol{x} : \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} < 0 \}$

$$egin{aligned} m{w} &= (rac{3}{2}, rac{1}{6}) = m{w}_1 - m{w}_2 \ m{w}_1 &= (1, -rac{1}{3}) \ m{w}_2 &= (-rac{1}{2}, -rac{1}{2}) \end{aligned}$$

- Blue class: $\{ \boldsymbol{x} : 1 = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x} \}$
- Orange class: $\{ \boldsymbol{x} : 2 = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x} \}$

$$m{w}_1 = (1, -rac{1}{3}) \ m{w}_2 = (-rac{1}{2}, -rac{1}{2})$$

- Blue class: $\{ \boldsymbol{x} : 1 = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x} \}$
- Orange class:
 - $\{ \boldsymbol{x} : 2 = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x} \}$

$$egin{aligned} m{w}_1 &= (1, -rac{1}{3}) \ m{w}_2 &= (-rac{1}{2}, -rac{1}{2}) \ m{w}_3 &= (0, 1) \end{aligned}$$

• Blue class: $\{ \boldsymbol{x} : 1 = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x} \}$

• Orange class:

$$\{\boldsymbol{x}: 2 = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}\}$$

• Green class:

 $\{ \boldsymbol{x} : 3 = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x} \}$

$$\mathcal{F} = \left\{ f(\boldsymbol{x}) = \operatorname*{argmax}_{k \in [\mathsf{C}]} \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w}_1, \dots, \boldsymbol{w}_{\mathsf{C}} \in \mathbb{R}^{\mathsf{D}} \right\}$$

$$\mathcal{F} = \left\{ f(\boldsymbol{x}) = \underset{k \in [\mathsf{C}]}{\operatorname{argmax}} \ \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w}_{1}, \dots, \boldsymbol{w}_{\mathsf{C}} \in \mathbb{R}^{\mathsf{D}} \right\}$$
$$= \left\{ f(\boldsymbol{x}) = \underset{k \in [\mathsf{C}]}{\operatorname{argmax}} \ (\boldsymbol{W} \boldsymbol{x})_{k} \mid \boldsymbol{W} \in \mathbb{R}^{\mathsf{C} \times \mathsf{D}} \right\}$$

$$\mathcal{F} = \left\{ f(\boldsymbol{x}) = \underset{k \in [\mathsf{C}]}{\operatorname{argmax}} \ \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w}_{1}, \dots, \boldsymbol{w}_{\mathsf{C}} \in \mathbb{R}^{\mathsf{D}} \right\}$$
$$= \left\{ f(\boldsymbol{x}) = \underset{k \in [\mathsf{C}]}{\operatorname{argmax}} \ (\boldsymbol{W} \boldsymbol{x})_{k} \mid \boldsymbol{W} \in \mathbb{R}^{\mathsf{C} \times \mathsf{D}} \right\}$$

Step 2: How do we generalize perceptron/hinge/logistic loss?

$$\mathcal{F} = \left\{ f(\boldsymbol{x}) = \underset{k \in [\mathsf{C}]}{\operatorname{argmax}} \ \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w}_{1}, \dots, \boldsymbol{w}_{\mathsf{C}} \in \mathbb{R}^{\mathsf{D}} \right\}$$
$$= \left\{ f(\boldsymbol{x}) = \underset{k \in [\mathsf{C}]}{\operatorname{argmax}} \ (\boldsymbol{W} \boldsymbol{x})_{k} \mid \boldsymbol{W} \in \mathbb{R}^{\mathsf{C} \times \mathsf{D}} \right\}$$

Step 2: How do we generalize perceptron/hinge/logistic loss?

This lecture: focus on the more popular logistic loss

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with $w = w_1 - w_2$:

$$\mathbb{P}(y=1 \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \frac{1}{1+e^{-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}} = \frac{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}}{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}} + e^{\boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}$$

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with $w = w_1 - w_2$:

$$\mathbb{P}(y=1 \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}} = \frac{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}}{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}} + e^{\boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}$$

Naturally, for multiclass:

$$\mathbb{P}(y = k \mid \boldsymbol{x}; \boldsymbol{W}) = \frac{e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k' \in [\mathsf{C}]} e^{\boldsymbol{w}_{k'}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}$$

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with $w = w_1 - w_2$:

$$\mathbb{P}(y=1 \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}} = \frac{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}}{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}} + e^{\boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}$$

Naturally, for multiclass:

$$\mathbb{P}(y = k \mid \boldsymbol{x}; \boldsymbol{W}) = \frac{e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k' \in [\mathsf{C}]} e^{\boldsymbol{w}_{k'}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}$$

This is called the *softmax function*.

Maximize probability of seeing labels $y_1,\ldots,y_{\sf N}$ given ${m x}_1,\ldots,{m x}_{\sf N}$

$$P(\boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \frac{e^{\boldsymbol{w}_{y_n}^{\mathsf{T}} \boldsymbol{x}_n}}{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x}_n}}$$

Maximize probability of seeing labels $y_1,\ldots,y_{\sf N}$ given ${m x}_1,\ldots,{m x}_{\sf N}$

$$P(\boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \frac{e^{\boldsymbol{w}_{y_n}^{\mathsf{T}} \boldsymbol{x}_n}}{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x}_n}}$$

By taking negative log, this is equivalent to minimizing

$$F(\boldsymbol{W}) = \sum_{n=1}^{\mathsf{N}} \ln \left(\frac{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}_n}}{e^{\boldsymbol{w}_{y_n}^{\mathrm{T}} \boldsymbol{x}_n}} \right)$$

Maximize probability of seeing labels $y_1,\ldots,y_{\sf N}$ given ${m x}_1,\ldots,{m x}_{\sf N}$

$$P(\boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \frac{e^{\boldsymbol{w}_{y_n}^{\mathrm{T}} \boldsymbol{x}_n}}{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}_n}}$$

By taking negative log, this is equivalent to minimizing

$$F(\boldsymbol{W}) = \sum_{n=1}^{\mathsf{N}} \ln\left(\frac{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}_n}}{e^{\boldsymbol{w}_{y_n}^{\mathrm{T}} \boldsymbol{x}_n}}\right) = \sum_{n=1}^{\mathsf{N}} \ln\left(1 + \sum_{k \neq y_n} e^{(\boldsymbol{w}_k - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}\right)$$

Maximize probability of seeing labels $y_1,\ldots,y_{\sf N}$ given ${m x}_1,\ldots,{m x}_{\sf N}$

$$P(\boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \frac{e^{\boldsymbol{w}_{y_n}^{\mathrm{T}} \boldsymbol{x}_n}}{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}_n}}$$

By taking negative log, this is equivalent to minimizing

$$F(\boldsymbol{W}) = \sum_{n=1}^{\mathsf{N}} \ln\left(\frac{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}_n}}{e^{\boldsymbol{w}_{y_n}^{\mathrm{T}} \boldsymbol{x}_n}}\right) = \sum_{n=1}^{\mathsf{N}} \ln\left(1 + \sum_{k \neq y_n} e^{(\boldsymbol{w}_k - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}\right)$$

This is the multiclass logistic loss, a.k.a. cross-entropy loss.
Applying MLE again

Maximize probability of seeing labels $y_1,\ldots,y_{\sf N}$ given ${m x}_1,\ldots,{m x}_{\sf N}$

$$P(\boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \frac{e^{\boldsymbol{w}_{y_n}^{\mathsf{T}} \boldsymbol{x}_n}}{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x}_n}}$$

By taking negative log, this is equivalent to minimizing

$$F(\boldsymbol{W}) = \sum_{n=1}^{\mathsf{N}} \ln\left(\frac{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}_n}}{e^{\boldsymbol{w}_{y_n}^{\mathrm{T}} \boldsymbol{x}_n}}\right) = \sum_{n=1}^{\mathsf{N}} \ln\left(1 + \sum_{k \neq y_n} e^{(\boldsymbol{w}_k - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}\right)$$

This is the multiclass logistic loss, a.k.a. cross-entropy loss.

When C = 2, this is the same as binary logistic loss.

Apply **SGD**: what is the gradient of

$$F_n(\boldsymbol{W}) = \ln\left(1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}\right)?$$

Apply **SGD**: what is the gradient of

$$F_n(\boldsymbol{W}) = \ln\left(1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}\right)?$$

It's a C \times D matrix. Let's focus on the *k*-th row:

Apply **SGD**: what is the gradient of

$$F_n(\boldsymbol{W}) = \ln\left(1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}\right)?$$

It's a C \times D matrix. Let's focus on the k-th row:

If $k \neq y_n$:

$$\nabla_{\boldsymbol{w}_{k}^{\mathrm{T}}} F_{n}(\boldsymbol{W}) = \frac{e^{(\boldsymbol{w}_{k} - \boldsymbol{w}_{y_{n}})^{\mathrm{T}} \boldsymbol{x}_{n}}}{1 + \sum_{k' \neq y_{n}} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_{n}})^{\mathrm{T}} \boldsymbol{x}_{n}}} \boldsymbol{x}_{n}^{\mathrm{T}}$$

Apply **SGD**: what is the gradient of

$$F_n(\boldsymbol{W}) = \ln\left(1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}\right)?$$

It's a C \times D matrix. Let's focus on the k-th row:

If $k \neq y_n$:

$$\nabla_{\boldsymbol{w}_{k}^{\mathrm{T}}} F_{n}(\boldsymbol{W}) = \frac{e^{(\boldsymbol{w}_{k} - \boldsymbol{w}_{y_{n}})^{\mathrm{T}} \boldsymbol{x}_{n}}}{1 + \sum_{k' \neq y_{n}} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_{n}})^{\mathrm{T}} \boldsymbol{x}_{n}}} \boldsymbol{x}_{n}^{\mathrm{T}} = \mathbb{P}(k \mid \boldsymbol{x}_{n}; \boldsymbol{W}) \boldsymbol{x}_{n}^{\mathrm{T}}$$

Apply SGD: what is the gradient of

$$F_n(\boldsymbol{W}) = \ln\left(1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}\right)?$$

It's a C \times D matrix. Let's focus on the k-th row:

If $k \neq y_n$: $\nabla_{\boldsymbol{w}_k^{\mathrm{T}}} F_n(\boldsymbol{W}) = \frac{e^{(\boldsymbol{w}_k - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}}{1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}} \boldsymbol{x}_n^{\mathrm{T}} = \mathbb{P}(k \mid \boldsymbol{x}_n; \boldsymbol{W}) \boldsymbol{x}_n^{\mathrm{T}}$

else:

$$\nabla_{\boldsymbol{w}_{k}^{\mathrm{T}}} F_{n}(\boldsymbol{W}) = \frac{-\left(\sum_{k' \neq y_{n}} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_{n}})^{\mathrm{T}} \boldsymbol{x}_{n}}\right)}{1 + \sum_{k' \neq y_{n}} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_{n}})^{\mathrm{T}} \boldsymbol{x}_{n}}} \boldsymbol{x}_{n}^{\mathrm{T}}$$

Apply SGD: what is the gradient of

$$F_n(\boldsymbol{W}) = \ln\left(1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}\right)?$$

It's a C \times D matrix. Let's focus on the k-th row:

If $k \neq y_n$: $\nabla_{\boldsymbol{w}_k^{\mathrm{T}}} F_n(\boldsymbol{W}) = \frac{e^{(\boldsymbol{w}_k - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}}{1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}} \boldsymbol{x}_n^{\mathrm{T}} = \mathbb{P}(k \mid \boldsymbol{x}_n; \boldsymbol{W}) \boldsymbol{x}_n^{\mathrm{T}}$

else:

$$\nabla_{\boldsymbol{w}_{k}^{\mathrm{T}}} F_{n}(\boldsymbol{W}) = \frac{-\left(\sum_{k' \neq y_{n}} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_{n}})^{\mathrm{T}} \boldsymbol{x}_{n}}\right)}{1 + \sum_{k' \neq y_{n}} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_{n}})^{\mathrm{T}} \boldsymbol{x}_{n}}} \boldsymbol{x}_{n}^{\mathrm{T}} = \left(\mathbb{P}(y_{n} \mid \boldsymbol{x}_{n}; \boldsymbol{W}) - 1\right) \boldsymbol{x}_{n}^{\mathrm{T}}$$

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

- **9** pick $n \in [N]$ uniformly at random
- 2 update the parameters

$$\boldsymbol{W} \leftarrow \boldsymbol{W} - \eta \begin{pmatrix} \mathbb{P}(y = 1 \mid \boldsymbol{x}_n; \boldsymbol{W}) \\ \vdots \\ \mathbb{P}(y = y_n \mid \boldsymbol{x}_n; \boldsymbol{W}) - 1 \\ \vdots \\ \mathbb{P}(y = \mathsf{C} \mid \boldsymbol{x}_n; \boldsymbol{W}) \end{pmatrix} \boldsymbol{x}_n^{\mathsf{T}}$$

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

- **9** pick $n \in [N]$ uniformly at random
- 2 update the parameters

$$oldsymbol{W} \leftarrow oldsymbol{W} - \eta \left(egin{array}{cc} \mathbb{P}(y=1 \mid oldsymbol{x}_n;oldsymbol{W}) \ dots \ \mathbb{P}(y=y_n \mid oldsymbol{x}_n;oldsymbol{W}) - 1 \ dots \ \mathbb{P}(y=\mathsf{C} \mid oldsymbol{x}_n;oldsymbol{W}) \end{array}
ight) oldsymbol{x}_n^{\mathrm{T}}$$

Think about why the algorithm makes sense intuitively.

Having learned W, we can either

• make a *deterministic* prediction $\operatorname{argmax}_{k \in [\mathsf{C}]} \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}$

Having learned W, we can either

- make a *deterministic* prediction $\operatorname{argmax}_{k \in [\mathsf{C}]} \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}$
- make a *randomized* prediction according to $\mathbb{P}(k \mid \boldsymbol{x}; \boldsymbol{W}) \propto e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}$

Having learned W, we can either

- make a *deterministic* prediction $\operatorname{argmax}_{k \in [\mathsf{C}]} \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}$
- make a *randomized* prediction according to $\mathbb{P}(k \mid \boldsymbol{x}; \boldsymbol{W}) \propto e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}$

In either case, (expected) mistake is bounded by logistic loss

Having learned $oldsymbol{W}$, we can either

- make a *deterministic* prediction $\operatorname{argmax}_{k \in [\mathsf{C}]} \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}$
- make a *randomized* prediction according to $\mathbb{P}(k \mid \boldsymbol{x}; \boldsymbol{W}) \propto e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}$
- In either case, (expected) mistake is bounded by logistic loss

 deterministic

$$\mathbb{I}[f(\boldsymbol{x}) \neq y] \leq \log_2 \left(1 + \sum_{k \neq y} e^{(\boldsymbol{w}_k - \boldsymbol{w}_y)^{\mathrm{T}} \boldsymbol{x}} \right)$$

Having learned $oldsymbol{W}$, we can either

- make a *deterministic* prediction $\operatorname{argmax}_{k \in [\mathsf{C}]} \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}$
- make a *randomized* prediction according to $\mathbb{P}(k \mid \boldsymbol{x}; \boldsymbol{W}) \propto e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}$
- In either case, (expected) mistake is bounded by logistic loss

 deterministic

$$\mathbb{I}[f(\boldsymbol{x}) \neq y] \leq \log_2 \left(1 + \sum_{k \neq y} e^{(\boldsymbol{w}_k - \boldsymbol{w}_y)^{\mathrm{T}} \boldsymbol{x}} \right)$$

randomized

 $\mathbb{E}\left[\mathbb{I}[f(\boldsymbol{x}) \neq y]\right]$

Having learned $oldsymbol{W}$, we can either

- make a *deterministic* prediction $\operatorname{argmax}_{k \in [\mathsf{C}]} \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}$
- make a *randomized* prediction according to $\mathbb{P}(k \mid \boldsymbol{x}; \boldsymbol{W}) \propto e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}$
- In either case, (expected) mistake is bounded by logistic loss

 deterministic

$$\mathbb{I}[f(\boldsymbol{x}) \neq y] \leq \log_2 \left(1 + \sum_{k \neq y} e^{(\boldsymbol{w}_k - \boldsymbol{w}_y)^{\mathrm{T}} \boldsymbol{x}} \right)$$

randomized

$$\mathbb{E}\left[\mathbb{I}[f(\boldsymbol{x}) \neq y]\right] = 1 - \mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{W})$$

Having learned $oldsymbol{W}$, we can either

- make a *deterministic* prediction $\operatorname{argmax}_{k \in [\mathsf{C}]} \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}$
- make a *randomized* prediction according to $\mathbb{P}(k \mid \boldsymbol{x}; \boldsymbol{W}) \propto e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}$
- In either case, (expected) mistake is bounded by logistic loss

 deterministic

$$\mathbb{I}[f(\boldsymbol{x}) \neq y] \leq \log_2 \left(1 + \sum_{k \neq y} e^{(\boldsymbol{w}_k - \boldsymbol{w}_y)^{\mathrm{T}} \boldsymbol{x}} \right)$$

randomized

 $\mathbb{E}\left[\mathbb{I}[f(\boldsymbol{x}) \neq y]\right] = 1 - \mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{W}) \leq -\ln \mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{W})$

Reduce multiclass to binary

Is there an *even more general and simpler approach* to derive multiclass classification algorithms?

Reduce multiclass to binary

Is there an *even more general and simpler approach* to derive multiclass classification algorithms?

Given a binary classification algorithm (*any one*, not just linear methods), can we turn it to a multiclass algorithm, *in a black-box manner*?

Reduce multiclass to binary

Is there an *even more general and simpler approach* to derive multiclass classification algorithms?

Given a binary classification algorithm (*any one*, not just linear methods), can we turn it to a multiclass algorithm, *in a black-box manner*?

Yes, there are in fact many ways to do it.

- one-versus-all (one-versus-rest, one-against-all, etc.)
- one-versus-one (all-versus-all, etc.)
- Error-Correcting Output Codes (ECOC)
- tree-based reduction

(picture credit: link)

Idea: train C binary classifiers to learn "is class k or not?" for each k.

(picture credit: link)

Idea: train C binary classifiers to learn "is class k or not?" for each k.

Training: for each class $k \in [C]$,

- ullet relabel examples with class k as +1, and all others as -1
- train a binary classifier h_k using this new dataset

(picture credit: link)

Idea: train C binary classifiers to learn "is class k or not?" for each k.

Training: for each class $k \in [C]$,

- relabel examples with class k as +1, and all others as -1
- train a binary classifier h_k using this new dataset

Prediction: for a new example x

• ask each h_k : does this belong to class k? (i.e. $h_k(x)$)

Prediction: for a new example x

- ask each h_k : does this belong to class k? (i.e. $h_k(x)$)
- randomly pick among all k's s.t. $h_k(x) = +1$.

Prediction: for a new example x

- ask each h_k : does this belong to class k? (i.e. $h_k(x)$)
- randomly pick among all k's s.t. $h_k(x) = +1$.

Issue: will (probably) make a mistake as long as one of h_k errs.

(picture credit: link)

Idea: train $\binom{C}{2}$ binary classifiers to learn "is class k or k'?".

(picture credit: link)

Idea: train $\binom{C}{2}$ binary classifiers to learn "is class k or k'?".

Training: for each pair (k, k'),

- ullet relabel examples with class k as +1 and examples with class k' as -1
- discard all other examples
- \bullet train a binary classifier $h_{(k,k^\prime)}$ using this new dataset

(picture credit: link)

Idea: train $\binom{C}{2}$ binary classifiers to learn "is class k or k'?".

Training: for each pair (k, k'),

- ullet relabel examples with class k as +1 and examples with class k' as -1
- discard all other examples
- \bullet train a binary classifier $h_{(k,k^\prime)}$ using this new dataset

		📕 VS. 📕		📕 VS. 📕		📕 VS. 📕		📕 VS. 📕		📕 VS. 📕		📕 VS. 📕		
<i>x</i> ₁		<i>x</i> ₁	—					<i>x</i> ₁	—			<i>x</i> ₁	—	
<i>x</i> ₂				<i>x</i> ₂	—	<i>x</i> ₂	+					<i>x</i> ₂	+	
<i>x</i> 3	\Rightarrow					<i>x</i> ₃	—	<i>x</i> 3	+	<i>x</i> 3	—			
<i>x</i> 4		<i>x</i> 4	—					<i>x</i> ₄	—			<i>x</i> 4	—	
X_5		<i>x</i> 5	+	<i>x</i> 5	+					<i>x</i> 5	+			
		1	\Downarrow		\Downarrow		\Downarrow		↓		\Downarrow		↓	
		$h_{(2)}$	1,2)	$h_{(1,3)}$		$h_{(3,4)}$		$h_{(4,2)}$		$h_{(1,4)}$		$h_{(3,2)}$		

Prediction: for a new example x

• ask each classifier $h_{(k,k')}$ to vote for either class k or k'

Prediction: for a new example x

- ask each classifier $h_{(k,k')}$ to vote for either class k or k'
- predict the class with the most votes (break tie in some way)

Prediction: for a new example x

- ask each classifier $h_{(k,k')}$ to vote for either class k or k'
- predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but *slower* in prediction.

(picture credit: link)

Idea: based on a code $M \in \{-1, +1\}^{C \times L}$, train L binary classifiers to learn "is bit b on or off".

(picture credit: link)

Idea: based on a code $M \in \{-1, +1\}^{C \times L}$, train L binary classifiers to learn "is bit b on or off".

Training: for each bit $b \in [L]$

- relabel example x_n as $M_{y_n,b}$
- train a binary classifier h_b using this new dataset.

Prediction: for a new example x

• compute the predicted code $\boldsymbol{c} = (h_1(\boldsymbol{x}), \dots, h_{\mathsf{L}}(\boldsymbol{x}))^{\mathrm{T}}$

Prediction: for a new example \boldsymbol{x}

- compute the predicted code $oldsymbol{c} = (h_1(oldsymbol{x}), \dots, h_{\mathsf{L}}(oldsymbol{x}))^{\mathrm{T}}$
- predict the class with the most similar code: $k = \operatorname{argmax}_k(Mc)_k$

Prediction: for a new example \boldsymbol{x}

- compute the predicted code $oldsymbol{c} = (h_1(oldsymbol{x}), \dots, h_{\mathsf{L}}(oldsymbol{x}))^{\mathrm{T}}$
- predict the class with the most similar code: $k = \operatorname{argmax}_k(Mc)_k$

How to design the code M?
Error-correcting output codes (ECOC)

Prediction: for a new example \boldsymbol{x}

- compute the predicted code $oldsymbol{c} = (h_1(oldsymbol{x}), \dots, h_{\mathsf{L}}(oldsymbol{x}))^{\mathrm{T}}$
- predict the class with the most similar code: $k = \operatorname{argmax}_k(Mc)_k$

How to design the code M?

• the more *dissimilar* the codes, the more robust

Error-correcting output codes (ECOC)

Prediction: for a new example \boldsymbol{x}

- compute the predicted code $oldsymbol{c} = (h_1(oldsymbol{x}), \dots, h_{\mathsf{L}}(oldsymbol{x}))^{\mathrm{T}}$
- predict the class with the most similar code: $k = \operatorname{argmax}_k(\boldsymbol{M}\boldsymbol{c})_k$

How to design the code M?

- the more *dissimilar* the codes, the more robust
 - if any two codes are d bits away, then prediction can tolerate about $d/2 \,$ errors

Error-correcting output codes (ECOC)

Prediction: for a new example $oldsymbol{x}$

- compute the predicted code $oldsymbol{c} = (h_1(oldsymbol{x}), \dots, h_{\mathsf{L}}(oldsymbol{x}))^{\mathrm{T}}$
- predict the class with the most similar code: $k = \operatorname{argmax}_k(\boldsymbol{Mc})_k$

How to design the code M?

- the more *dissimilar* the codes, the more robust
 - if any two codes are d bits away, then prediction can tolerate about $d/2 \,$ errors
- random code is often a good choice

Idea: train \approx C binary classifiers to learn "belongs to which half?".

Idea: train \approx C binary classifiers to learn "belongs to which half?".

Training: see pictures

Idea: train \approx C binary classifiers to learn "belongs to which half?".

Training: see pictures

Prediction is also natural,

Idea: train \approx C binary classifiers to learn "belongs to which half?".

Training: see pictures

Prediction is also natural, *but is very fast!* (think ImageNet where $C \approx 20K$)

Reduction	training time	prediction time	remark

Reduction	training time	prediction time	remark
OvA			

Reduction	training time	prediction time	remark
OvA	CN		

Reduction	training time	prediction time	remark
OvA	CN	С	

Reduction	training time	prediction time	remark
OvA	CN	С	not robust

Reduction	training time	prediction time	remark
OvA	CN	С	not robust
OvO			

		🔳 v	s. 📕	🔳 v	s. 📕	🔳 v	'S. 📕	🔳 v	'S. 📒	🔳 v	s. 🔳	🗖 v	s. 📒
<i>x</i> ₁		<i>x</i> 1						<i>x</i> 1				x_1	
<i>x</i> ₂				<i>x</i> ₂		<i>x</i> ₂	+					x2	+
<i>x</i> 3	\Rightarrow					<i>x</i> 3		X3	+	<i>X</i> 3			
<i>x</i> 4		X4						X4				<i>x</i> 4	
x_5		<i>x</i> 5	+	<i>x</i> 5	+					<i>x</i> 5	+		
		1	V	1	ŀ		Ų.		Ų		ĥ	1	ŀ
		$= h_{(}$	1,2)	$-h_{(}$	1,3)	$ -h_i$	3,4)	$h_{(}$	4,2)	$-h_0$	1,4)	$= h_{(i)}$	3,2)

Reduction	training time	prediction time	remark
OvA	CN	С	not robust
OvO	(C-1)N		

		🔳 v:	s. 📕	🔳 v	s. 📕	🗖 🗖 🗸	'S. 📕	🔳 v	'S. 📒	🔳 v	'S. 📕	🗖 v	s. 📕
<i>x</i> ₁		<i>x</i> 1						<i>x</i> 1				x_1	
<i>x</i> ₂				<i>x</i> ₂		x2	+					<i>x</i> ₂	+
<i>x</i> 3	\Rightarrow					<i>x</i> 3		X3	+	<i>x</i> 3			
<i>x</i> 4		<i>x</i> 4						X4				<i>x</i> 4	
x_5		<i>x</i> 5	+	<i>x</i> 5	+					<i>x</i> 5	+		
		1	ŀ	1	ŀ		Ų.	.	Ų		₽	1	ļ
		- h ₍₁	.,2)	$h_{(}$	1,3)	$= h_0$	3,4)	$h_{(}$	4,2)	$-h_0$	1,4)	$h_{(i)}$	$^{(3,2)}$

Reduction	training time	prediction time	remark
OvA	CN	С	not robust
OvO	(C-1)N	$\mathcal{O}(C^2)$	

		🔳 vs	5. 📕	v :	s. 🔳	– v	s. 🔳	🔳 v	s. 📕	v	s. 🔳	– v	s. 📕
<i>x</i> ₁		<i>x</i> 1						<i>x</i> 1				x_1	
<i>x</i> ₂				<i>x</i> ₂		<i>x</i> ₂	+					<i>x</i> ₂	+
x_3	\Rightarrow					<i>x</i> 3		<i>x</i> 3	+	<i>x</i> 3			
<i>x</i> 4		X4						<i>x</i> 4				<i>x</i> 4	
x_5		<i>x</i> 5	+	<i>x</i> 5	+					x_5	+		
		∣ ↓	Ļ	1	ŀ		ļ	1	ĥ		Ų.	1	ŀ
		$h_{(1)}$,2)	$-h_{(1)}$	1,3)	$-h_{(}$	3,4)	$h_{(}$	4,2)	$-h_0$	1,4)	$h_{(i)}$	3,2)

Reduction	training time	prediction time	remark
OvA	CN	С	not robust
OvO	(C-1)N	$\mathcal{O}(C^2)$	can achieve very small training error

		📕 vs. 📕	📕 vs. 📕	📕 vs. 🔳	📕 vs. 📕	🔳 vs. 📕	📕 vs. 📒
<i>x</i> ₁		x ₁ –			x ₁ –		x ₁ –
<i>x</i> ₂			x ₂ –	x ₂ +			x ₂ +
<i>X</i> 3	\Rightarrow			x3 -	x3 +	x3 -	
<i>x</i> 4		x4 -			x4 -		x4 -
x_5		x5 +	x5 +			x5 +	
		↓	↓	↓	↓	↓	↓
		$h_{(1,2)}$	$h_{(1,3)}$	$h_{(3,4)}$	$h_{(4,2)}$	$h_{(1,4)}$	$h_{(3,2)}$

Reduction	training time	prediction time	remark
OvA	CN	С	not robust
OvO	(C-1)N	$\mathcal{O}(C^2)$	can achieve very small training error
ECOC			

Reduction	training time	prediction time	remark
OvA	CN	С	not robust
OvO	(C-1)N	$\mathcal{O}(C^2)$	can achieve very small training error
ECOC	LN		

Reduction	training time	prediction time	remark
OvA	CN	С	not robust
OvO	(C-1)N	$\mathcal{O}(C^2)$	can achieve very small training error
ECOC	LN	L	

Reduction	training time	prediction time	remark
OvA	CN	С	not robust
OvO	(C-1)N	$\mathcal{O}(C^2)$	can achieve very small training error
ECOC	LN	L	need diversity when designing code

Reduction	training time	prediction time	remark
OvA	CN	С	not robust
OvO	(C-1)N	$\mathcal{O}(C^2)$	can achieve very small training error
ECOC	LN	L	need diversity when designing code
Tree			

Reduction	training time	prediction time	remark
OvA	CN	С	not robust
OvO	(C-1)N	$\mathcal{O}(C^2)$	can achieve very small training error
ECOC	LN	L	need diversity when designing code
Tree	$\mathcal{O}((\log_2 C)N)$		

Reduction	training time	prediction time	remark
OvA	CN	С	not robust
OvO	(C-1)N	$\mathcal{O}(C^2)$	can achieve very small training error
ECOC	LN	L	need diversity when designing code
Tree	$\mathcal{O}((\log_2C)N)$	$\mathcal{O}(\log_2 C)$	

Reduction	training time	prediction time	remark
OvA	CN	С	not robust
OvO	(C-1)N	$\mathcal{O}(C^2)$	can achieve very small training error
ECOC	LN	L	need diversity when designing code
Tree	$\mathcal{O}((\log_2 C)N)$	$\mathcal{O}(\log_2 C)$	good for "extreme classification"

Outline

Review of Last Lecture

Multiclass Classification

Neural Nets

- Definition
- Backpropagation
- Preventing overfitting

4 Convolutional neural networks (ConvNets/CNNs)

Linear models are not always adequate

We can use a nonlinear mapping as discussed:

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^{\mathsf{D}} ooldsymbol{z}\in\mathbb{R}^{\mathsf{M}}$$

Linear models are not always adequate

We can use a nonlinear mapping as discussed:

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^{\mathsf{D}} ooldsymbol{z}\in\mathbb{R}^{\mathsf{M}}$$

But what kind of nonlinear mapping ϕ should be used? Can we actually learn this nonlinear mapping?

Linear models are not always adequate

We can use a nonlinear mapping as discussed:

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^{\mathsf{D}} ooldsymbol{z}\in\mathbb{R}^{\mathsf{M}}$$

But what kind of nonlinear mapping ϕ should be used? Can we actually learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets

Linear model as a one-layer neural net

h(a) = a for linear model

Linear model as a one-layer neural net

h(a) = a for linear model

To create non-linearity, can use

- Rectified Linear Unit (ReLU): $h(a) = \max\{0, a\}$
- sigmoid function: $h(a) = \frac{1}{1+e^{-a}}$
- TanH: $h(a) = \frac{e^a e^{-a}}{e^a + e^{-a}}$
- many more

More output nodes

 $oldsymbol{W} \in \mathbb{R}^{4 imes 3}$, $oldsymbol{h}: \mathbb{R}^4 o \mathbb{R}^4$ so $oldsymbol{h}(oldsymbol{a}) = (h_1(a_1), h_2(a_2), h_3(a_3), h_4(a_4))$

More output nodes

 $m{W} \in \mathbb{R}^{4 imes 3}$, $m{h}: \mathbb{R}^4 o \mathbb{R}^4$ so $m{h}(m{a}) = (h_1(a_1), h_2(a_2), h_3(a_3), h_4(a_4))$

Can think of this as a nonlinear mapping: $\phi({m x})={m h}({m W}{m x})$

More layers

Becomes a network:

More layers

Becomes a network:

• each node is called a neuron

More layers

Becomes a network:

- each node is called a neuron
- h is called the activation function
 - can use h(a) = 1 for one neuron in each layer to *incorporate bias term*
 - output neuron can use h(a) = a

More layers

Becomes a network:

- each node is called a neuron
- h is called the activation function
 - can use h(a) = 1 for one neuron in each layer to *incorporate bias term*
 - output neuron can use h(a) = a
- #layers refers to #hidden_layers (plus 1 or 2 for input/output layers)
More layers

Becomes a network:

• each node is called a neuron

- can use h(a) = 1 for one neuron in each layer to *incorporate bias term*
- output neuron can use h(a) = a
- #layers refers to #hidden_layers (plus 1 or 2 for input/output layers)
- deep neural nets can have many layers and *millions* of parameters

More layers

Becomes a network:

• each node is called a neuron

- can use h(a) = 1 for one neuron in each layer to *incorporate bias term*
- output neuron can use h(a) = a
- #layers refers to #hidden_layers (plus 1 or 2 for input/output layers)
- deep neural nets can have many layers and *millions* of parameters
- this is a **feedforward, fully connected** neural net, there are many variants (convolutional nets, residual nets, recurrent nets, etc.)

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any continuous functions.

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any continuous functions.

It might need a huge number of neurons though, and *depth helps!*

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any continuous functions.

It might need a huge number of neurons though, and *depth helps!*

Designing network architecture is important and very complicated

• for feedforward network, need to decide number of hidden layers, number of neurons at each layer, activation functions, etc.

Math formulation

An L-layer neural net can be written as

$$\boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{h}_{\mathsf{L}}\left(\boldsymbol{W}_{L}\boldsymbol{h}_{\mathsf{L}-1}\left(\boldsymbol{W}_{L-1}\cdots\boldsymbol{h}_{1}\left(\boldsymbol{W}_{1}\boldsymbol{x}
ight)
ight)$$

input layer hidden layer 1 hidden layer 2 output layer

Math formulation

An L-layer neural net can be written as

$$oldsymbol{f}(oldsymbol{x}) = oldsymbol{h}_{\mathsf{L}}\left(oldsymbol{W}_{L}oldsymbol{h}_{\mathsf{L}-1}\left(oldsymbol{W}_{L-1}\cdotsoldsymbol{h}_{1}\left(oldsymbol{W}_{1}oldsymbol{x}
ight)
ight)$$

nput layer hidden layer 1 hidden layer 2 output layer

To ease notation, for a given input x, define recursively

$$oldsymbol{o}_0 = oldsymbol{x}, \qquad oldsymbol{a}_\ell = oldsymbol{W}_\ell oldsymbol{o}_{\ell-1}, \qquad oldsymbol{o}_\ell = oldsymbol{h}_\ell(oldsymbol{a}_\ell) \qquad \quad (\ell = 1, \dots, \mathsf{L})$$

where

- $W_\ell \in \mathbb{R}^{\mathsf{D}_\ell imes \mathsf{D}_{\ell-1}}$ is the weights between layer $\ell-1$ and ℓ
- $\bullet \ D_0 = D, D_1, \ldots, D_L$ are numbers of neurons at each layer
- $a_\ell \in \mathbb{R}^{\mathsf{D}_\ell}$ is input to layer ℓ
- $o_\ell \in \mathbb{R}^{\mathsf{D}_\ell}$ is output of layer ℓ
- $h_\ell : \mathbb{R}^{\mathsf{D}_\ell} \to \mathbb{R}^{\mathsf{D}_\ell}$ is activation functions at layer ℓ

Learning the model

No matter how complicated the model is, our goal is the same: minimize

$$F(\boldsymbol{W}_1,\ldots,\boldsymbol{W}_{\mathsf{L}}) = \frac{1}{N} \sum_{n=1}^{\mathsf{N}} F_n(\boldsymbol{W}_1,\ldots,\boldsymbol{W}_{\mathsf{L}})$$

Learning the model

No matter how complicated the model is, our goal is the same: minimize

$$F(\boldsymbol{W}_1,\ldots,\boldsymbol{W}_{\mathsf{L}}) = \frac{1}{N} \sum_{n=1}^{\mathsf{N}} F_n(\boldsymbol{W}_1,\ldots,\boldsymbol{W}_{\mathsf{L}})$$

where

$$F_n(\boldsymbol{W}_1, \dots, \boldsymbol{W}_{\mathsf{L}}) = \begin{cases} \|\boldsymbol{f}(\boldsymbol{x}_n) - \boldsymbol{y}_n\|_2^2 & \text{for regression} \\ \ln\left(1 + \sum_{k \neq y_n} e^{f(\boldsymbol{x}_n)_k - f(\boldsymbol{x}_n)_{y_n}}\right) & \text{for classification} \end{cases}$$

Same thing: apply SGD! even if the model is nonconvex.

Same thing: apply **SGD**! even if the model is *nonconvex*.

What is the gradient of this complicated function?

Same thing: apply **SGD**! even if the model is *nonconvex*. What is the gradient of this complicated function?

Chain rule is the only secret:

• for a composite function f(g(w))

$$\frac{\partial f}{\partial w} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial w}$$

Same thing: apply **SGD**! even if the model is *nonconvex*. What is the gradient of this complicated function?

Chain rule is the only secret:

 \bullet for a composite function $f(g(\boldsymbol{w}))$

$$\frac{\partial f}{\partial w} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial w}$$

• for a composite function $f(g_1(w), \ldots, g_d(w))$

$$\frac{\partial f}{\partial w} = \sum_{i=1}^{d} \frac{\partial f}{\partial g_i} \frac{\partial g_i}{\partial w}$$

Same thing: apply **SGD**! even if the model is *nonconvex*. What is the gradient of this complicated function?

Chain rule is the only secret:

 \bullet for a composite function $f(g(\boldsymbol{w}))$

$$\frac{\partial f}{\partial w} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial w}$$

• for a composite function $f(g_1(w), \ldots, g_d(w))$

$$\frac{\partial f}{\partial w} = \sum_{i=1}^{d} \frac{\partial f}{\partial g_i} \frac{\partial g_i}{\partial w}$$

the simplest example $f(g_1(w), g_2(w)) = g_1(w)g_2(w)$

Computing the derivative

Drop the subscript ℓ for layer for simplicity.

Computing the derivative

Drop the subscript ℓ for layer for simplicity.

$$\frac{\partial F_n}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} \frac{\partial a_i}{\partial w_{ij}}$$

Computing the derivative

Drop the subscript ℓ for layer for simplicity.

$$\frac{\partial F_n}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} \frac{\partial a_i}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} \frac{\partial (w_{ij}o_j)}{\partial w_{ij}}$$

Computing the derivative

Drop the subscript ℓ for layer for simplicity.

$$\frac{\partial F_n}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} \frac{\partial a_i}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} \frac{\partial (w_{ij}o_j)}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} o_j$$

Computing the derivative

Drop the subscript ℓ for layer for simplicity.

$$\frac{\partial F_n}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} \frac{\partial a_i}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} \frac{\partial (w_{ij}o_j)}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} o_j$$
$$\frac{\partial F_n}{\partial a_i} = \frac{\partial F_n}{\partial o_i} \frac{\partial o_i}{\partial a_i}$$

Computing the derivative

Drop the subscript ℓ for layer for simplicity.

$$\frac{\partial F_n}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} \frac{\partial a_i}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} \frac{\partial (w_{ij}o_j)}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} o_j$$
$$\frac{\partial F_n}{\partial a_i} = \frac{\partial F_n}{\partial o_i} \frac{\partial o_i}{\partial a_i} = \left(\sum_k \frac{\partial F_n}{\partial a_k} \frac{\partial a_k}{\partial o_i}\right) h'_i(a_i)$$

Computing the derivative

Drop the subscript ℓ for layer for simplicity.

$$\frac{\partial F_n}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} \frac{\partial a_i}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} \frac{\partial (w_{ij}o_j)}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} o_j$$
$$\frac{\partial F_n}{\partial a_i} = \frac{\partial F_n}{\partial o_i} \frac{\partial o_i}{\partial a_i} = \left(\sum_k \frac{\partial F_n}{\partial a_k} \frac{\partial a_k}{\partial o_i}\right) h'_i(a_i) = \left(\sum_k \frac{\partial F_n}{\partial a_k} w_{ki}\right) h'_i(a_i)$$

Adding the subscript for layer:

$$\frac{\partial F_n}{\partial w_{\ell,ij}} = \frac{\partial F_n}{\partial a_{\ell,i}} o_{\ell-1,j}$$
$$\frac{\partial F_n}{\partial a_{\ell,i}} = \left(\sum_k \frac{\partial F_n}{\partial a_{\ell+1,k}} w_{\ell+1,ki}\right) h'_{\ell,i}(a_{\ell,i})$$

Adding the subscript for layer:

$$\frac{\partial F_n}{\partial w_{\ell,ij}} = \frac{\partial F_n}{\partial a_{\ell,i}} o_{\ell-1,j}$$
$$\frac{\partial F_n}{\partial a_{\ell,i}} = \left(\sum_k \frac{\partial F_n}{\partial a_{\ell+1,k}} w_{\ell+1,ki}\right) h'_{\ell,i}(a_{\ell,i})$$

For the last layer, for square loss

$$\frac{\partial F_n}{\partial \mathbf{a}_{\mathsf{L},i}} = \frac{\partial (h_{\mathsf{L},i}(a_{\mathsf{L},i}) - y_{n,i})^2}{\partial a_{\mathsf{L},i}}$$

Adding the subscript for layer:

$$\frac{\partial F_n}{\partial w_{\ell,ij}} = \frac{\partial F_n}{\partial a_{\ell,i}} o_{\ell-1,j}$$
$$\frac{\partial F_n}{\partial a_{\ell,i}} = \left(\sum_k \frac{\partial F_n}{\partial a_{\ell+1,k}} w_{\ell+1,ki}\right) h'_{\ell,i}(a_{\ell,i})$$

For the last layer, for square loss

$$\frac{\partial F_n}{\partial a_{\mathsf{L},i}} = \frac{\partial (h_{\mathsf{L},i}(a_{\mathsf{L},i}) - y_{n,i})^2}{\partial a_{\mathsf{L},i}} = 2(h_{\mathsf{L},i}(a_{\mathsf{L},i}) - y_{n,i})h'_{\mathsf{L},i}(a_{\mathsf{L},i})$$

Adding the subscript for layer:

$$\frac{\partial F_n}{\partial w_{\ell,ij}} = \frac{\partial F_n}{\partial a_{\ell,i}} o_{\ell-1,j}$$
$$\frac{\partial F_n}{\partial a_{\ell,i}} = \left(\sum_k \frac{\partial F_n}{\partial a_{\ell+1,k}} w_{\ell+1,ki}\right) h'_{\ell,i}(a_{\ell,i})$$

For the last layer, for square loss

$$\frac{\partial F_n}{\partial a_{\mathsf{L},i}} = \frac{\partial (h_{\mathsf{L},i}(a_{\mathsf{L},i}) - y_{n,i})^2}{\partial a_{\mathsf{L},i}} = 2(h_{\mathsf{L},i}(a_{\mathsf{L},i}) - y_{n,i})h'_{\mathsf{L},i}(a_{\mathsf{L},i})$$

Exercise: try to do it for logistic loss yourself.

Using matrix notation greatly simplifies presentation and implementation:

$$\frac{\partial F_n}{\partial \boldsymbol{W}_{\ell}} = \frac{\partial F_n}{\partial \boldsymbol{a}_{\ell}} \boldsymbol{o}_{\ell-1}^{\mathrm{T}} \in \mathbb{R}^{\mathsf{D}_{\ell} \times \mathsf{D}_{\ell-1}}$$

$$\frac{\partial F_n}{\partial \boldsymbol{a}_{\ell}} = \begin{cases} \left(\boldsymbol{W}_{\ell+1}^{\mathrm{T}} \frac{\partial F_n}{\partial \boldsymbol{a}_{\ell+1}} \right) \circ \boldsymbol{h}_{\ell}'(\boldsymbol{a}_{\ell}) & \text{ if } \ell < \mathsf{L} \\ 2(\boldsymbol{h}_{\mathsf{L}}(\boldsymbol{a}_{\mathsf{L}}) - \boldsymbol{y}_n) \circ \boldsymbol{h}_{\mathsf{L}}'(\boldsymbol{a}_{\mathsf{L}}) & \text{ else} \end{cases}$$

where $v_1 \circ v_2 = (v_{11}v_{21}, \cdots, v_{1D}v_{2D})$ is the element-wise product (a.k.a. Hadamard product).

Verify yourself!

The **backpropagation** algorithm (**Backprop**)

Initialize W_1, \ldots, W_L randomly.

The **backpropagation** algorithm (**Backprop**)

Initialize W_1, \ldots, W_L randomly. Repeat:

 $\textcircled{O} \text{ randomly pick one data point } n \in [\mathsf{N}]$

The **backpropagation** algorithm (**Backprop**)

Initialize $\boldsymbol{W}_1, \ldots, \boldsymbol{W}_{\mathsf{L}}$ randomly. Repeat:

() randomly pick one data point $n \in [N]$

② forward propagation: for each layer $\ell = 1, \dots, L$

• compute $oldsymbol{a}_\ell = W_\ell oldsymbol{o}_{\ell-1}$ and $oldsymbol{o}_\ell = oldsymbol{h}_\ell(oldsymbol{a}_\ell)$ $(oldsymbol{o}_0 = oldsymbol{x}_n)$

The **backpropagation** algorithm (**Backprop**)

Initialize W_1, \ldots, W_L randomly. Repeat:

- () randomly pick one data point $n \in [N]$
- **(2)** forward propagation: for each layer $\ell = 1, \dots, L$
 - compute $oldsymbol{a}_\ell = oldsymbol{W}_\ell oldsymbol{o}_{\ell-1}$ and $oldsymbol{o}_\ell = oldsymbol{h}_\ell(oldsymbol{a}_\ell)$ $(oldsymbol{o}_0 = oldsymbol{x}_n)$
- **3** backward propagation: for each $\ell = L, \ldots, 1$
 - compute

$$\frac{\partial F_n}{\partial \boldsymbol{a}_{\ell}} = \begin{cases} \left(\boldsymbol{W}_{\ell+1}^{\mathrm{T}} \frac{\partial F_n}{\partial \boldsymbol{a}_{\ell+1}} \right) \circ \boldsymbol{h}_{\ell}'(\boldsymbol{a}_{\ell}) & \text{ if } \ell < \mathsf{L} \\ 2(\boldsymbol{h}_{\mathsf{L}}(\boldsymbol{a}_{\mathsf{L}}) - \boldsymbol{y}_n) \circ \boldsymbol{h}_{\mathsf{L}}'(\boldsymbol{a}_{\mathsf{L}}) & \text{ else} \end{cases}$$

• update weights

$$\boldsymbol{W}_{\ell} \leftarrow \boldsymbol{W}_{\ell} - \eta \frac{\partial F_n}{\partial \boldsymbol{W}_{\ell}} = \boldsymbol{W}_{\ell} - \eta \frac{\partial F_n}{\partial \boldsymbol{a}_{\ell}} \boldsymbol{o}_{\ell-1}^{\mathrm{T}}$$

The backpropagation algorithm (Backprop)

Initialize $\boldsymbol{W}_1, \ldots, \boldsymbol{W}_L$ randomly. Repeat:

- () randomly pick one data point $n \in [N]$
- **2** forward propagation: for each layer $\ell = 1, \dots, L$
 - compute $oldsymbol{a}_\ell = oldsymbol{W}_\ell oldsymbol{o}_{\ell-1}$ and $oldsymbol{o}_\ell = oldsymbol{h}_\ell(oldsymbol{a}_\ell)$ $(oldsymbol{o}_0 = oldsymbol{x}_n)$
- **3** backward propagation: for each $\ell = L, \ldots, 1$
 - compute

$$\frac{\partial F_n}{\partial \boldsymbol{a}_{\ell}} = \begin{cases} \left(\boldsymbol{W}_{\ell+1}^{\mathrm{T}} \frac{\partial F_n}{\partial \boldsymbol{a}_{\ell+1}} \right) \circ \boldsymbol{h}_{\ell}'(\boldsymbol{a}_{\ell}) & \text{ if } \ell < \mathsf{L} \\ 2(\boldsymbol{h}_{\mathsf{L}}(\boldsymbol{a}_{\mathsf{L}}) - \boldsymbol{y}_n) \circ \boldsymbol{h}_{\mathsf{L}}'(\boldsymbol{a}_{\mathsf{L}}) & \text{ else} \end{cases}$$

• update weights

$$\boldsymbol{W}_{\ell} \leftarrow \boldsymbol{W}_{\ell} - \eta \frac{\partial F_n}{\partial \boldsymbol{W}_{\ell}} = \boldsymbol{W}_{\ell} - \eta \frac{\partial F_n}{\partial \boldsymbol{a}_{\ell}} \boldsymbol{o}_{\ell-1}^{\mathrm{T}}$$

(Important: should W_{ℓ} be overwritten immediately in the last step?)

Many variants based on Backprop

Many variants based on Backprop

• **mini-batch**: randomly sample a batch of examples to form a stochastic gradient (common batch size: 32, 64, 128, etc.)

Many variants based on Backprop

- **mini-batch**: randomly sample a batch of examples to form a stochastic gradient (common batch size: 32, 64, 128, etc.)
- **batch normalization**: normalize the inputs of each neuron over the mini-batch (to zero-mean and one-variance; *c.f.* Lec 1)

Many variants based on Backprop

- **mini-batch**: randomly sample a batch of examples to form a stochastic gradient (common batch size: 32, 64, 128, etc.)
- **batch normalization**: normalize the inputs of each neuron over the mini-batch (to zero-mean and one-variance; *c.f.* Lec 1)
- **momentum**: make use of previous gradients (taking inspiration from physics)

• • • •

SGD with momentum (a simple version)

Initialize w_0 and velocity v = 0

For t = 1, 2, ...

- form a stochastic gradient $oldsymbol{g}_t$
- update velocity $m{v} \leftarrow lpha m{v} + m{g}_t$ for some discount factor $lpha \in (0,1)$
- update weight $oldsymbol{w}_t \leftarrow oldsymbol{w}_{t-1} \eta oldsymbol{v}$
SGD with momentum (a simple version)

Initialize $oldsymbol{w}_0$ and velocity $oldsymbol{v}=oldsymbol{0}$

For t = 1, 2, ...

- form a stochastic gradient $oldsymbol{g}_t$
- update velocity $m{v} \leftarrow \alpha m{v} + m{g}_t$ for some discount factor $\alpha \in (0,1)$
- update weight $oldsymbol{w}_t \leftarrow oldsymbol{w}_{t-1} \eta oldsymbol{v}$

Updates for first few rounds:

•
$$w_1 = w_0 - \eta g_1$$

• $w_2 = w_1 - \alpha \eta g_1 - \eta g_2$
• $w_3 = w_2 - \alpha^2 \eta g_1 - \alpha \eta g_2 - \eta g_3$
• ...

Overfitting

Overfitting is very likely since neural nets are too powerful.

Methods to overcome overfitting:

- data augmentation
- regularization
- dropout
- early stopping
- • •

Data augmentation

Data: the more the better. How do we get more data?

Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data

Affine Elastic Noise Distortion Deformation Random Horizontal Hue Shift flip Translation

Regularization

L2 regularization: minimize

$$F'(\boldsymbol{W}_1,\ldots,\boldsymbol{W}_L) = F(\boldsymbol{W}_1,\ldots,\boldsymbol{W}_L) + \lambda \sum_{\ell=1}^L \|\boldsymbol{W}_\ell\|_2^2$$

Regularization

L2 regularization: minimize

$$F'(\boldsymbol{W}_1,\ldots,\boldsymbol{W}_L) = F(\boldsymbol{W}_1,\ldots,\boldsymbol{W}_L) + \lambda \sum_{\ell=1}^L \|\boldsymbol{W}_\ell\|_2^2$$

Simple change to the gradient:

$$\frac{\partial F'}{\partial w_{ij}} = \frac{\partial F}{\partial w_{ij}} + 2\lambda w_{ij}$$

Regularization

L2 regularization: minimize

$$F'(\boldsymbol{W}_1,\ldots,\boldsymbol{W}_L) = F(\boldsymbol{W}_1,\ldots,\boldsymbol{W}_L) + \lambda \sum_{\ell=1}^L \|\boldsymbol{W}_\ell\|_2^2$$

Simple change to the gradient:

$$\frac{\partial F'}{\partial w_{ij}} = \frac{\partial F}{\partial w_{ij}} + 2\lambda w_{ij}$$

Introduce weight decaying effect

Dropout

Independently delete each neuron with a fixed probability (say 0.5), during each iteration of Backprop (only for training, not for testing)

Very effective, makes training faster as well

Early stopping

Stop training when the performance on validation set stops improving

Preventing overfitting

Conclusions for neural nets

Deep neural networks

• are hugely popular, achieving *best performance* on many problems

Conclusions for neural nets

- are hugely popular, achieving best performance on many problems
- do need a lot of data to work well

Conclusions for neural nets

- are hugely popular, achieving *best performance* on many problems
- do need a lot of data to work well
- take a lot of time to train (need GPUs for massive parallel computing)

Preventing overfitting

Conclusions for neural nets

- are hugely popular, achieving *best performance* on many problems
- do need a lot of data to work well
- take *a lot of time* to train (need GPUs for massive parallel computing)
- take some work to select architecture and hyperparameters

Conclusions for neural nets

- are hugely popular, achieving *best performance* on many problems
- do need a lot of data to work well
- take a lot of time to train (need GPUs for massive parallel computing)
- take some work to select architecture and hyperparameters
- are still not well understood in theory

Outline

Review of Last Lecture

- 2 Multiclass Classification
- 3 Neural Nets

Convolutional neural networks (ConvNets/CNNs)

- Motivation
- Architecture

Acknowledgements

Not much math, a lot of empirical intuitions

Acknowledgements

Not much math, a lot of empirical intuitions

The materials borrow heavily from the following sources:

- Stanford Course CS231n: http://cs231n.stanford.edu/
- Dr. Ian Goodfellow's lectures on deep learning: http://deeplearningbook.org

Both website provides tons of useful resources: notes, demos, videos, etc.

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0 (assume given set of discrete labels) {dog, cat, truck, plane, ...}

→ cat

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 6

This image by Nikita is licensed under CC-BY 2.0

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 7

Challenges: Viewpoint variation

Challenges: Illumination

This image is CC0 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 9

Challenges: Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by Umberto Salvagnir is licensed under CC-BY 2.0

This image by sare bear is licensed under CC-BY 2.0

This image by Tom Thai is licensed under CC-BY 2.0

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 10

Challenges: Occlusion

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image by jonsson is licensed under CC-BY 2.0

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 11

Challenges: Background Clutter

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 12

Challenges: Intraclass variation

This image is CC0 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 13

Fundamental problems in vision

The key challenge

How to train a model that can tolerate all those variations?

Fundamental problems in vision

The key challenge

How to train a model that can tolerate all those variations?

Main ideas

- need a lot of data that exhibits those variations
- need more specialized models to capture the invariance

Issues of standard NN for image inputs

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 27 A

April 18, 2017

Issues of standard NN for image inputs

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 27

April 18, 2017

Spatial structure is lost!

A special case of fully connected neural nets

A special case of fully connected neural nets

• usually consist of **convolution layers**, ReLU layers, **pooling layers**, and regular fully connected layers

A special case of fully connected neural nets

- usually consist of **convolution layers**, ReLU layers, **pooling layers**, and regular fully connected layers
- key idea: learning from low-level to high-level features

A special case of fully connected neural nets

- usually consist of **convolution layers**, ReLU layers, **pooling layers**, and regular fully connected layers
- key idea: learning from low-level to high-level features

Architecture

Convolution layer

Arrange neurons as a **3D volume** naturally

Convolution Layer

32x32x3 image -> preserve spatial structure

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 28 April 18, 2017

Architecture

Convolution

Convolution Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 29 April 18, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 30 April 18, 2017

Convolution Layer

Fei-Fei Li & Justin Johnson & Serena Yeung Lei

Lecture 5 - 31 April 18, 2017

Convolution Layer

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 32 A

April 18, 2017

consider a second, green filter

Fei-Fei Li & Justin Johnson & Serena Yeung

Convolution Layer

Lecture 5 - 33 A

April 18, 2017

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 34 April 18, 2017

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 35 April 18, 2017

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 36 April 18, 2017

Why convolution makes sense?

Main idea: if a filter is useful at one location, it should be useful at other locations.

Why convolution makes sense?

Main idea: if a filter is useful at one location, it should be useful at other locations.

A simple example why filtering is useful

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:

Connection to fully connected NNs

- A convolution layer is a special case of a fully connected layer:
 - filter = weights with sparse connection

Local Receptive Field Leads to Sparse Connectivity (affects less)

Sparse connections due to small convolution kernel

Dense connections

Sparse connectivity: being affected by less

Sparse connections due to small convolution kernel

Dense connections

Figure 9.3

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:

- filter = weights with sparse connection
- parameters sharing

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:

- filter = weights with sparse connection
- parameters sharing

Much fewer parameters! Example (ignore bias terms):

- FC: $(32 \times 32 \times 3) \times (28 \times 28) \approx 2.4M$
- CNN: $5 \times 5 \times 3 = 75$

Architecture

Spatial arrangement: stride and padding

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 42

April 18, 2017

7

7

7x7 input (spatially) assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 43 April 18, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 44 April 18, 2017

7x7 input (spatially) assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 45 April 18, 2017

7

7x7 ass 7 7

7x7 input (spatially) assume 3x3 filter

=> 5x5 output

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 46 April 18, 2017

7

7x7 input (spatially) assume 3x3 filter applied **with stride 2**

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 47 April 18, 2017

7

7x7 input (spatially) assume 3x3 filter applied **with stride 2**

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 48 April 18, 2017

7

7

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 49 April 18, 2017

7

7x7 input (spatially) assume 3x3 filter applied **with stride 3?**

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 50 April 18, 2017

7

7

7x7 input (spatially) assume 3x3 filter applied **with stride 3?**

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 51 April 18, 2017

Output size: (N - F) / stride + 1

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 52 April 18, 2017

In practice: Common to zero pad the border

e.g. input 7x7 3x3 filter, applied with stride 1 pad with 1 pixel border => what is the output?

> (recall:) (N - F) / stride + 1

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 53 April 18, 2017

In practice: Common to zero pad the border

e.g. input 7x7 3x3 filter, applied with stride 1 pad with 1 pixel border => what is the output?

7x7 output!

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 54 April 18, 2017

In practice: Common to zero pad the border

e.g. input 7x7 3x3 filter, applied with stride 1 pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

- F = 5 => zero pad with 2
- F = 7 => zero pad with 3

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 55 April 18, 2017

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Input: a volume of size $W_1 \times H_1 \times D_1$

Input: a volume of size $W_1 \times H_1 \times D_1$

Hyperparameters:

- K filters of size $F \times F$
- ullet stride S
- amount of zero padding P (for one side)

Input: a volume of size $W_1 \times H_1 \times D_1$

Hyperparameters:

- K filters of size $F \times F$
- stride S
- amount of zero padding P (for one side)

Output: a volume of size $W_2 \times H_2 \times D_2$ where

- $W_2 =$
- $H_2 =$
- $D_2 =$

Input: a volume of size $W_1 \times H_1 \times D_1$

Hyperparameters:

- K filters of size $F \times F$
- stride S
- amount of zero padding P (for one side)

Output: a volume of size $W_2 \times H_2 \times D_2$ where

•
$$W_2 = (W_1 + 2P - F)/S + 1$$

- $H_2 =$
- $D_2 =$

Input: a volume of size $W_1 \times H_1 \times D_1$

Hyperparameters:

- K filters of size $F \times F$
- stride S
- amount of zero padding P (for one side)

Output: a volume of size $W_2 \times H_2 \times D_2$ where

•
$$W_2 = (W_1 + 2P - F)/S + 1$$

•
$$H_2 = (H_1 + 2P - F)/S + 1$$

•
$$D_2 =$$
Summary for convolution layer

Input: a volume of size $W_1 \times H_1 \times D_1$

Hyperparameters:

- K filters of size $F \times F$
- ullet stride S
- amount of zero padding P (for one side)

Output: a volume of size $W_2 \times H_2 \times D_2$ where

•
$$W_2 = (W_1 + 2P - F)/S + 1$$

•
$$H_2 = (H_1 + 2P - F)/S + 1$$

•
$$D_2 = K$$

Summary for convolution layer

Input: a volume of size $W_1 \times H_1 \times D_1$

Hyperparameters:

- K filters of size $F \times F$
- stride S
- amount of zero padding P (for one side)

Output: a volume of size $W_2 \times H_2 \times D_2$ where

•
$$W_2 = (W_1 + 2P - F)/S + 1$$

•
$$H_2 = (H_1 + 2P - F)/S + 1$$

•
$$D_2 = K$$

#parameters: $(F \times F \times D_1 + 1) \times K$ weights

Summary for convolution layer

Input: a volume of size $W_1 \times H_1 \times D_1$

Hyperparameters:

- K filters of size $F \times F$
- ${\ensuremath{\bullet}}$ stride S
- amount of zero padding P (for one side)

Output: a volume of size $W_2 \times H_2 \times D_2$ where

•
$$W_2 = (W_1 + 2P - F)/S + 1$$

•
$$H_2 = (H_1 + 2P - F)/S + 1$$

•
$$D_2 = K$$

#parameters: $(F \times F \times D_1 + 1) \times K$ weights

Common setting: F = 3, S = P = 1

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 57 April 18, 2017

Input volume: **32x32x3 10** 5x5 filters with stride 1, pad 2

Output volume size: (32+2*2-5)/1+1 = 32 spatially, so 32x32x10

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 58 April 18, 2017

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 59 April 18, 2017

Input volume: **32x32x3 10** 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias) => 76*10 = 760

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture

Lecture 5 - 60 April 18, 2017

Another element: pooling

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 72 April 18, 2017

Similar to a filter, except

• depth is always 1

Similar to a filter, except

- depth is always 1
- different operations: average, L2-norm, max

Similar to a filter, except

- depth is always 1
- different operations: average, L2-norm, max
- no parameters to be learned

Similar to a filter, except

- depth is always 1
- different operations: average, L2-norm, max
- no parameters to be learned

Max pooling with 2×2 filter and stride 2 is very common

MAX POOLING

Putting everything together

Typical architecture for CNNs:

$$\mathsf{Input} \to [\mathsf{[Conv} \to \mathsf{ReLU}]^*\mathsf{N} \to \mathsf{Pool?}]^*\mathsf{M} \to [\mathsf{FC} \to \mathsf{ReLU}]^*\mathsf{Q} \to \mathsf{FC}$$

Putting everything together

Typical architecture for CNNs:

$$\mathsf{Input} \to [\mathsf{[Conv} \to \mathsf{ReLU}]^*\mathsf{N} \to \mathsf{Pool?}]^*\mathsf{M} \to [\mathsf{FC} \to \mathsf{ReLU}]^*\mathsf{Q} \to \mathsf{FC}$$

Common choices: $N \leq 5, Q \leq 2$, M is large

Putting everything together

Typical architecture for CNNs:

$$\mathsf{Input} \to [\mathsf{[Conv} \to \mathsf{ReLU}]^*\mathsf{N} \to \mathsf{Pool?}]^*\mathsf{M} \to [\mathsf{FC} \to \mathsf{ReLU}]^*\mathsf{Q} \to \mathsf{FC}$$

Common choices: $N \leq 5, Q \leq 2$, M is large

Well-known CNNs: LeNet, AlexNet, ZF Net, GoogLeNet, VGGNet, etc. All achieve excellent performance on image classification tasks.

How to train a CNN?

How do we learn the filters/weights?

How to train a CNN?

How do we learn the filters/weights?

Essentially the same as FC NNs: apply SGD/backpropagation