CSCI567 Machine Learning (Fall 2023)

Prof. Dani Yogatama
Slide Deck from Prof. Haipeng Luo

University of Southern California
Sep 1, 2023

Outline

(1) Linear regression

(2) Linear regression with nonlinear basis
(3) Overfitting and preventing overfitting

4 Linear Classifiers and Surrogate Losses
(5) A Detour of Numerical Optimization Methods

6 Perceptron
(7) Logistic Regression

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- ...

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- ...

Key difference from classification

- continuous vs discrete
- measure prediction errors differently.
- lead to quite different learning algorithms.

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- ...

Key difference from classification

- continuous vs discrete
- measure prediction errors differently.
- lead to quite different learning algorithms.

Linear Regression: regression with linear models

Ex: Predicting the sale price of a house

Retrieve historical sales records (training data)

Features used to predict

Property Details for 3620 South BUDLONG, Los Angeles, CA 90007

Duate provided by FTectiMLS and rayy not multh the puble record. Leann Mors.

Interior Features		
Kitchen Information - Riemodeled - Oven, Range	Laundry Information - Inside Laundry	Heating 8. Cooling - Wal Gaoling LInit/[s)
Muith-Unit information		
Community Features - Units in Complex (Tota): 5 Multe-Family Information - \# Lessed: 5 - M of Buildings: 1 - Owner Pays Water - Tenant Pays Electricity, Tenant Pays Gas Unit 1 Information - It of Bects: 2 - \# of Baths: 1 - Unfumished - Monthly Rent: \$1,700	Unit 2 Information - \# of Beds: 3 - \# of Baths: 1 - Unfurnished - Monthly Rent: $\$ 2,250$ Unit 3 Information - Unfurnished Unit 4 Information - \# of Beoss: 3 - \# of Baths: 1 - Unfurnished	- Nonthly Rent: $\mathbf{\$ 2} 2350$ Unit 5 Intormation - \#ot Eeds 3 - \# of Baths 2 - Unfurnished - Nonthly Rest: $\$ 2,326$ Unit 6 Intormation - not Bets:3 - Not Baxhes 1 - Monthly Fent: $\$ 2,250$
Property / Lot Details		
Property Features - Automatic Gate, Card/Code Access Lot Information - Lot Size (Sq. F(.): 9,649 - Lot Size lacrest 0.2215 - Lot Size Source: Public Records	- Automatic Gate, Lawn, Sidewaiks - Corner Lot, Near Public Transit Property Information - Updated/Femodeled - Square Footspe Source: Public Records	- Tax Paroal Number: 5040017018
Parking / Oarage, Exterior Features, Uulities \& Financing		
Parking Information * \# of Parkng Spaces (Total): 12 - Parking Space - Gated Building Information - Total Floora: 2	Utility Information - Green Certification Rating: 0.00 - Green Location: Transportation, Walkability - Green Walk Score: 0 - Green Ybar Cerifilied: 0	Financlal Information - Cspitalization Rate (\%a) 6.25 - Actual Annual Gross Fent: \$128,331 - Gross Rent Mutiplier. 11.29
Location Detalla, Misc. Intormation 8 Listing Intormation		
Location Information - Cross Strosts: W 36th PI	Expense Information - Operating: \$37,664	Listing Information - Listing Terms: Gash, Cash To Existing Loan - Buyer Finanding: Gash

Correlation between square footage and sale price

Possibly linear relationship

Sale price \approx price_per_sqft \times square_footage + fixed_expense

Possibly linear relationship

Sale price \approx price_per_sqft \times square_footage + fixed_expense
(slope) (intercept)

How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. right or wrong) is inappropriate for continuous outcomes.

How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. right or wrong) is inappropriate for continuous outcomes.
- We can look at
- absolute error: | prediction - sale price |

How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. right or wrong) is inappropriate for continuous outcomes.
- We can look at
- absolute error: | prediction - sale price |
- or squared error: (prediction - sale price) ${ }^{2}$ (most common)

How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. right or wrong) is inappropriate for continuous outcomes.
- We can look at
- absolute error: | prediction - sale price |
- or squared error: (prediction - sale price) ${ }^{2}$ (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error,

How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. right or wrong) is inappropriate for continuous outcomes.
- We can look at
- absolute error: | prediction - sale price |
- or squared error: (prediction - sale price) ${ }^{2}$ (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but on what set?

How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. right or wrong) is inappropriate for continuous outcomes.
- We can look at
- absolute error: | prediction - sale price |
- or squared error: (prediction - sale price) ${ }^{2}$ (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but on what set?

- test set, ideal but we cannot use test set while training

How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. right or wrong) is inappropriate for continuous outcomes.
- We can look at
- absolute error: | prediction - sale price |
- or squared error: (prediction - sale price) ${ }^{2}$ (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but on what set?

- test set, ideal but we cannot use test set while training
- training set \checkmark

Example

Predicted price $=$ price_per_sqft \times square_footage + fixed_expense one model: price_per_sqft $=0.3 \mathrm{~K}$, fixed_expense $=210 \mathrm{~K}$

sqft	sale price (K)	prediction (K)	squared error
2000	810	810	0
2100	907	840	67^{2}
1100	312	540	228^{2}
5500	2,600	1,860	740^{2}
\cdots	\cdots	\cdots	\cdots
Total			$0+67^{2}+228^{2}+740^{2}+\cdots$

Adjust price_per_sqft and fixed_expense such that the total squared error is minimized.

Formal setup for linear regression

Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (features, covariates, context, predictors, etc)
Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)
Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$

Formal setup for linear regression

Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (features, covariates, context, predictors, etc)
Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)
Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$
Linear model: $f: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}$, with $f(\boldsymbol{x})=w_{0}+\sum_{d=1}^{D} w_{d} x_{d}$

Formal setup for linear regression

Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (features, covariates, context, predictors, etc)
Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)
Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$
Linear model: $f: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}$, with $f(\boldsymbol{x})=w_{0}+\sum_{d=1}^{D} w_{d} x_{d}=w_{0}+\boldsymbol{w}^{\mathbf{T}} \boldsymbol{x}$ (superscript ${ }^{T}$ stands for transpose),

Formal setup for linear regression

Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (features, covariates, context, predictors, etc)
Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)
Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$
Linear model: $f: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}$, with $f(\boldsymbol{x})=w_{0}+\sum_{d=1}^{D} w_{d} x_{d}=w_{0}+\boldsymbol{w}^{\mathbf{T}} \boldsymbol{x}$ (superscript ${ }^{T}$ stands for transpose), i.e. a hyper-plane parametrized by

- $\boldsymbol{w}=\left[\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias w_{0}

Formal setup for linear regression

Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (features, covariates, context, predictors, etc)
Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)
Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$
Linear model: $f: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}$, with $f(\boldsymbol{x})=w_{0}+\sum_{d=1}^{D} w_{d} x_{d}=w_{0}+\boldsymbol{w}^{\mathbf{T}} \boldsymbol{x}$ (superscript ${ }^{T}$ stands for transpose), i.e. a hyper-plane parametrized by

- $\boldsymbol{w}=\left[\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias w_{0}

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{\boldsymbol{x}}=\left[\begin{array}{llll}1 & x_{1} & x_{2} & \ldots\end{array} x_{\mathrm{D}}\right]^{\mathrm{T}}$

Formal setup for linear regression

Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (features, covariates, context, predictors, etc)
Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)
Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$
Linear model: $f: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}$, with $f(\boldsymbol{x})=w_{0}+\sum_{d=1}^{D} w_{d} x_{d}=w_{0}+\boldsymbol{w}^{\mathbf{T}} \boldsymbol{x}$ (superscript ${ }^{T}$ stands for transpose), i.e. a hyper-plane parametrized by

- $\boldsymbol{w}=\left[\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias w_{0}

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{\boldsymbol{x}}=\left[\begin{array}{llll}1 & x_{1} & x_{2} & \ldots\end{array} x_{\mathrm{D}}\right]^{\mathrm{T}}$
- let $\tilde{\boldsymbol{w}}=\left[\begin{array}{lllll}w_{0} & w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$, a concise representation of all $D+1$ parameters

Formal setup for linear regression

Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (features, covariates, context, predictors, etc)
Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)
Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$
Linear model: $f: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}$, with $f(\boldsymbol{x})=w_{0}+\sum_{d=1}^{D} w_{d} x_{d}=w_{0}+\boldsymbol{w}^{\mathbf{T}} \boldsymbol{x}$ (superscript ${ }^{T}$ stands for transpose), i.e. a hyper-plane parametrized by

- $\boldsymbol{w}=\left[\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias w_{0}

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{\boldsymbol{x}}=\left[\begin{array}{llll}1 & x_{1} & x_{2} & \ldots\end{array} x_{\mathrm{D}}\right]^{\mathrm{T}}$
- let $\tilde{\boldsymbol{w}}=\left[\begin{array}{lllll}w_{0} & w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$, a concise representation of all $D+1$ parameters
- the model becomes simply $f(\boldsymbol{x})=\tilde{\boldsymbol{w}}^{\mathbf{T}} \tilde{\boldsymbol{x}}$

Formal setup for linear regression

Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (features, covariates, context, predictors, etc)
Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)
Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$
Linear model: $f: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}$, with $f(\boldsymbol{x})=w_{0}+\sum_{d=1}^{D} w_{d} x_{d}=w_{0}+\boldsymbol{w}^{\mathbf{T}} \boldsymbol{x}$ (superscript ${ }^{T}$ stands for transpose), i.e. a hyper-plane parametrized by

- $\boldsymbol{w}=\left[\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias w_{0}

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{\boldsymbol{x}}=\left[\begin{array}{llll}1 & x_{1} & x_{2} & \ldots\end{array} x_{\mathrm{D}}\right]^{\mathrm{T}}$
- let $\tilde{\boldsymbol{w}}=\left[\begin{array}{lllll}w_{0} & w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$, a concise representation of all $D+1$ parameters
- the model becomes simply $f(\boldsymbol{x})=\tilde{\boldsymbol{w}}^{\mathbf{T}} \tilde{\boldsymbol{x}}$
- sometimes just use $\boldsymbol{w}, \boldsymbol{x}, \mathrm{D}$ for $\tilde{\boldsymbol{w}}, \tilde{\boldsymbol{x}}, \mathrm{D}+1$!

Goal

Minimize total squared error

$$
\sum_{n}\left(f\left(\boldsymbol{x}_{n}\right)-y_{n}\right)^{2}=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

Goal

Minimize total squared error

- Residual Sum of Squares (RSS), a function of $\tilde{\boldsymbol{w}}$

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(f\left(\boldsymbol{x}_{n}\right)-y_{n}\right)^{2}=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

Goal

Minimize total squared error

- Residual Sum of Squares (RSS), a function of $\tilde{\boldsymbol{w}}$

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(f\left(\boldsymbol{x}_{n}\right)-y_{n}\right)^{2}=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

- find $\tilde{\boldsymbol{w}}^{*}=\operatorname{argmin} \operatorname{RSS}(\tilde{\boldsymbol{w}})$, i.e. least squares solution (more $\tilde{\boldsymbol{w}} \in \mathbb{R}^{\mathrm{D}+1}$
generally called empirical risk minimizer)

Goal

Minimize total squared error

- Residual Sum of Squares (RSS), a function of $\tilde{\boldsymbol{w}}$

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(f\left(\boldsymbol{x}_{n}\right)-y_{n}\right)^{2}=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

- find $\tilde{\boldsymbol{w}}^{*}=\operatorname{argmin} \operatorname{RSS}(\tilde{\boldsymbol{w}})$, i.e. least squares solution (more $\tilde{\boldsymbol{w}} \in \mathbb{R}^{\mathrm{D}+1}$
generally called empirical risk minimizer)
- reduce machine learning to optimization

Goal

Minimize total squared error

- Residual Sum of Squares (RSS), a function of $\tilde{\boldsymbol{w}}$

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(f\left(\boldsymbol{x}_{n}\right)-y_{n}\right)^{2}=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

- find $\tilde{\boldsymbol{w}}^{*}=\operatorname{argmin} \operatorname{RSS}(\tilde{\boldsymbol{w}})$, i.e. least squares solution (more $\tilde{\boldsymbol{w}} \in \mathbb{R}^{\mathrm{D}+1}$
generally called empirical risk minimizer)
- reduce machine learning to optimization
- in principle can apply any optimization algorithm, but linear regression admits a closed-form solution

Warm-up: $\mathrm{D}=0$

Only one parameter w_{0} : constant prediction $f(x)=w_{0}$

f is a horizontal line, where should it be?

Warm-up: $\mathrm{D}=0$

Optimization objective becomes

$$
\operatorname{RSS}\left(w_{0}\right)=\sum_{n}\left(w_{0}-y_{n}\right)^{2} \quad\left(\text { it's a quadratic } a w_{0}^{2}+b w_{0}+c\right)
$$

Warm-up: $\mathrm{D}=0$

Optimization objective becomes

$$
\begin{aligned}
\operatorname{RSS}\left(w_{0}\right) & =\sum_{n}\left(w_{0}-y_{n}\right)^{2} \quad\left(\text { it's a quadratic } a w_{0}^{2}+b w_{0}+c\right) \\
& =N w_{0}^{2}-2\left(\sum_{n} y_{n}\right) w_{0}+\mathrm{cnt} .
\end{aligned}
$$

Warm-up: $\mathrm{D}=0$

Optimization objective becomes

$$
\begin{aligned}
\operatorname{RSS}\left(w_{0}\right) & =\sum_{n}\left(w_{0}-y_{n}\right)^{2} \quad\left(\text { it's a quadratic } a w_{0}^{2}+b w_{0}+c\right) \\
& =N w_{0}^{2}-2\left(\sum_{n} y_{n}\right) w_{0}+\mathrm{cnt} . \\
& =N\left(w_{0}-\frac{1}{N} \sum_{n} y_{n}\right)^{2}+\mathrm{cnt} .
\end{aligned}
$$

Warm-up: $\mathrm{D}=0$

Optimization objective becomes

$$
\begin{aligned}
\operatorname{RSS}\left(w_{0}\right) & =\sum_{n}\left(w_{0}-y_{n}\right)^{2} \quad\left(\text { it's a quadratic } a w_{0}^{2}+b w_{0}+c\right) \\
& =N w_{0}^{2}-2\left(\sum_{n} y_{n}\right) w_{0}+\mathrm{cnt} \\
& =N\left(w_{0}-\frac{1}{N} \sum_{n} y_{n}\right)^{2}+\mathrm{cnt}
\end{aligned}
$$

It is clear that $w_{0}^{*}=\frac{1}{N} \sum_{n} y_{n}$, i.e. the average

Warm-up: $\mathrm{D}=0$

Optimization objective becomes

$$
\begin{aligned}
\operatorname{RSS}\left(w_{0}\right) & \left.=\sum_{n}\left(w_{0}-y_{n}\right)^{2} \quad \quad \text { (it's a quadratic } a w_{0}^{2}+b w_{0}+c\right) \\
& =N w_{0}^{2}-2\left(\sum_{n} y_{n}\right) w_{0}+\mathrm{cnt} . \\
& =N\left(w_{0}-\frac{1}{N} \sum_{n} y_{n}\right)^{2}+\mathrm{cnt} .
\end{aligned}
$$

It is clear that $w_{0}^{*}=\frac{1}{N} \sum_{n} y_{n}$, i.e. the average
Exercise: what if we use absolute error instead of squared error?

Warm-up: $\mathrm{D}=1$

Optimization objective becomes

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right)^{2}
$$

Warm-up: $\mathrm{D}=1$

Optimization objective becomes

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right)^{2}
$$

General approach: find stationary points, i.e., points with zero gradient

$$
\left\{\begin{array}{ll}
\frac{\partial \operatorname{RSS}(\tilde{\boldsymbol{w}})}{\partial w_{0}}=0 \\
\frac{\partial \operatorname{RSS}(\tilde{\boldsymbol{w}})}{\partial w_{1}}=0
\end{array} \Rightarrow \begin{array}{ll}
\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right) & =0 \\
\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right) x_{n} & =0
\end{array}\right.
$$

Warm-up: $\mathrm{D}=1$

Optimization objective becomes

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right)^{2}
$$

General approach: find stationary points, i.e., points with zero gradient

$$
\begin{gathered}
\left\{\begin{array}{c}
\frac{\partial \operatorname{RSS}(\tilde{\boldsymbol{w}})}{\partial w}=0 \\
\frac{\partial \mathrm{RSS}(\tilde{\boldsymbol{w}})}{\partial w_{1}}=0
\end{array} \Rightarrow \begin{array}{l}
\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right) \\
\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right) x_{n} \\
=0
\end{array}\right. \\
\Rightarrow \begin{array}{l}
N w_{0}+w_{1} \sum_{n} x_{n} \\
w_{0} \sum_{n} x_{n}+w_{1} \sum_{n} x_{n}^{2}=\sum_{n} y_{n} \quad(\text { a linear system })
\end{array}
\end{gathered}
$$

Warm-up: $\mathrm{D}=1$

Optimization objective becomes

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right)^{2}
$$

General approach: find stationary points, i.e., points with zero gradient

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{\partial \operatorname{RSS}(\tilde{\boldsymbol{w}})}{\partial{ }_{w}}=0 \\
\frac{\partial \mathrm{RSS}(\tilde{\boldsymbol{w}})}{\partial w_{1}}=0
\end{array} \Rightarrow \begin{array}{l}
\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right) \\
\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right) x_{n}=0
\end{array}\right. \\
& \Rightarrow \begin{array}{ll}
N w_{0}+w_{1} \sum_{n} x_{n} \\
w_{0} \sum_{n} x_{n}+w_{1} \sum_{n} x_{n}^{2} & =\sum_{n} y_{n} \\
=y_{n} x_{n}
\end{array} \quad \text { (a linear system) } \\
& \Rightarrow\left(\begin{array}{cc}
N & \sum_{n} x_{n} \\
\sum_{n} x_{n} & \sum_{n} x_{n}^{2}
\end{array}\right)\binom{w_{0}}{w_{1}}=\binom{\sum_{n} y_{n}}{\sum_{n} x_{n} y_{n}}
\end{aligned}
$$

Least square solution for $\mathrm{D}=1$

$$
\Rightarrow\binom{w_{0}^{*}}{w_{1}^{*}}=\left(\begin{array}{cc}
N & \sum_{n} x_{n} \\
\sum_{n} x_{n} & \sum_{n} x_{n}^{2}
\end{array}\right)^{-1}\binom{\sum_{n} y_{n}}{\sum_{n} x_{n} y_{n}}
$$

(assuming the matrix is invertible)

Least square solution for $\mathrm{D}=1$

$$
\Rightarrow\binom{w_{0}^{*}}{w_{1}^{*}}=\left(\begin{array}{cc}
N & \sum_{n} x_{n} \\
\sum_{n} x_{n} & \sum_{n}^{n} x_{n}^{2}
\end{array}\right)^{-1}\binom{\sum_{n} y_{n}}{\sum_{n} x_{n} y_{n}}
$$

(assuming the matrix is invertible)

Are stationary points minimizers?

Least square solution for $\mathrm{D}=1$

$$
\Rightarrow\binom{w_{0}^{*}}{w_{1}^{*}}=\left(\begin{array}{cc}
N & \sum_{n} x_{n} \\
\sum_{n} x_{n} & \sum_{n}^{n} x_{n}^{2}
\end{array}\right)^{-1}\binom{\sum_{n} y_{n}}{\sum_{n} x_{n} y_{n}}
$$

(assuming the matrix is invertible)

Are stationary points minimizers?

- yes for convex objectives (RSS is convex in $\tilde{\boldsymbol{w}}$)

Least square solution for $\mathrm{D}=1$

$$
\Rightarrow\binom{w_{0}^{*}}{w_{1}^{*}}=\left(\begin{array}{cc}
N & \sum_{n} x_{n} \\
\sum_{n} x_{n} & \sum_{n} x_{n}^{2}
\end{array}\right)^{-1}\binom{\sum_{n} y_{n}}{\sum_{n} x_{n} y_{n}}
$$

(assuming the matrix is invertible)

Are stationary points minimizers?

- yes for convex objectives (RSS is convex in $\tilde{\boldsymbol{w}}$)
- not true in general

General least square solution

Objective

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

General least square solution

Objective

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

Again, find stationary points (multivariate calculus)

$$
\nabla \operatorname{RSS}(\tilde{\boldsymbol{w}})=2 \sum_{n} \tilde{\boldsymbol{x}}_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)
$$

General least square solution

Objective

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

Again, find stationary points (multivariate calculus)

$$
\nabla \operatorname{RSS}(\tilde{\boldsymbol{w}})=2 \sum_{n} \tilde{\boldsymbol{x}}_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right) \propto\left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}}\right) \tilde{\boldsymbol{w}}-\sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}
$$

General least square solution

Objective

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

Again, find stationary points (multivariate calculus)

$$
\begin{aligned}
\nabla \mathrm{RSS}(\tilde{\boldsymbol{w}}) & =2 \sum_{n} \tilde{\boldsymbol{x}}_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right) \propto\left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}}\right) \tilde{\boldsymbol{w}}-\sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n} \\
& =\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
\end{aligned}
$$

where

$$
\tilde{\boldsymbol{X}}=\left(\begin{array}{c}
\tilde{\boldsymbol{x}}_{1}^{\mathrm{T}} \\
\tilde{\boldsymbol{x}}_{2}^{\mathrm{T}} \\
\vdots \\
\tilde{\boldsymbol{x}}_{\mathrm{N}}^{\mathrm{T}}
\end{array}\right) \in \mathbb{R}^{\mathrm{N} \times(D+1)}, \quad \boldsymbol{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{\mathrm{N}}
\end{array}\right) \in \mathbb{R}^{\mathrm{N}}
$$

General least square solution

Objective

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

Again, find stationary points (multivariate calculus)

$$
\begin{aligned}
\nabla \mathrm{RSS}(\tilde{\boldsymbol{w}}) & =2 \sum_{n} \tilde{\boldsymbol{x}}_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right) \propto\left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}}\right) \tilde{\boldsymbol{w}}-\sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n} \\
& =\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}=\mathbf{0}
\end{aligned}
$$

where

$$
\tilde{\boldsymbol{X}}=\left(\begin{array}{c}
\tilde{\boldsymbol{x}}_{1}^{\mathrm{T}} \\
\tilde{\boldsymbol{x}}_{2}^{\mathrm{T}} \\
\vdots \\
\tilde{\boldsymbol{x}}_{\mathrm{N}}^{\mathrm{T}}
\end{array}\right) \in \mathbb{R}^{\mathrm{N} \times(D+1)}, \quad \boldsymbol{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{\mathrm{N}}
\end{array}\right) \in \mathbb{R}^{\mathrm{N}}
$$

General least square solution

$$
\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}=\mathbf{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

assuming $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ (covariance matrix) is invertible for now.

General least square solution

$$
\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}=\mathbf{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

assuming $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ (covariance matrix) is invertible for now.
Again by convexity $\tilde{\boldsymbol{w}}^{*}$ is the minimizer of RSS.

General least square solution

$$
\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}=\mathbf{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

assuming $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ (covariance matrix) is invertible for now.
Again by convexity $\tilde{\boldsymbol{w}}^{*}$ is the minimizer of RSS.

Verify the solution when $\mathrm{D}=1$:

$$
\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{\mathrm{N}}
\end{array}\right)\left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\cdots & \cdots \\
1 & x_{\mathrm{N}}
\end{array}\right)=\left(\begin{array}{cc}
N & \sum_{n} x_{n} \\
\sum_{n} x_{n} & \sum_{n} x_{n}^{2}
\end{array}\right)
$$

General least square solution

$$
\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}=\mathbf{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

assuming $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ (covariance matrix) is invertible for now.
Again by convexity $\tilde{\boldsymbol{w}}^{*}$ is the minimizer of RSS.

Verify the solution when $\mathrm{D}=1$:

$$
\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{\mathrm{N}}
\end{array}\right)\left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\cdots & \cdots \\
1 & x_{\mathrm{N}}
\end{array}\right)=\left(\begin{array}{cc}
N & \sum_{n} x_{n} \\
\sum_{n} x_{n} & \sum_{n} x_{n}^{2}
\end{array}\right)
$$

when $\mathrm{D}=0:\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1}=\frac{1}{N}, \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}=\sum_{n} y_{n}$

Another approach

RSS is a quadratic, so let's complete the square:

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n}-y_{n}\right)^{2}=\|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}\|_{2}^{2}
$$

Another approach

RSS is a quadratic, so let's complete the square:

$$
\begin{aligned}
& \operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n}-y_{n}\right)^{2}=\|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}\|_{2}^{2} \\
& =(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y})^{\mathrm{T}}(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y})
\end{aligned}
$$

Another approach

RSS is a quadratic, so let's complete the square:

$$
\begin{aligned}
& \operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n}-y_{n}\right)^{2}=\|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}\|_{2}^{2} \\
& =(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y})^{\mathrm{T}}(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}) \\
& =\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}+\mathrm{cnt} .
\end{aligned}
$$

Another approach

RSS is a quadratic, so let's complete the square:

$$
\begin{aligned}
& \operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n}-y_{n}\right)^{2}=\|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}\|_{2}^{2} \\
& =(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y})^{\mathrm{T}}(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}) \\
& =\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}+\mathrm{cnt} \\
& =\left(\tilde{\boldsymbol{w}}-\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)\left(\tilde{\boldsymbol{w}}-\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)+\mathrm{cnt}
\end{aligned}
$$

Another approach

RSS is a quadratic, so let's complete the square:

$$
\begin{aligned}
& \operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n}-y_{n}\right)^{2}=\|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}\|_{2}^{2} \\
& =(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y})^{\mathrm{T}}(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}) \\
& =\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}+\mathrm{cnt} . \\
& =\left(\tilde{\boldsymbol{w}}-\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)\left(\tilde{\boldsymbol{w}}-\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)+\mathrm{cnt} .
\end{aligned}
$$

Note: $\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \boldsymbol{u}=(\tilde{\boldsymbol{X}} \boldsymbol{u})^{\mathrm{T}} \tilde{\boldsymbol{X}} \boldsymbol{u}=\|\tilde{\boldsymbol{X}} \boldsymbol{u}\|_{2}^{2} \geq 0$ and is 0 if $\boldsymbol{u}=0$.

Another approach

RSS is a quadratic, so let's complete the square:

$$
\begin{aligned}
& \operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n}-y_{n}\right)^{2}=\|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}\|_{2}^{2} \\
& =(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y})^{\mathrm{T}}(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}) \\
& =\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}+\mathrm{cnt} . \\
& =\left(\tilde{\boldsymbol{w}}-\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)\left(\tilde{\boldsymbol{w}}-\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)+\mathrm{cnt} .
\end{aligned}
$$

Note: $\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \boldsymbol{u}=(\tilde{\boldsymbol{X}} \boldsymbol{u})^{\mathrm{T}} \tilde{\boldsymbol{X}} \boldsymbol{u}=\|\tilde{\boldsymbol{X}} \boldsymbol{u}\|_{2}^{2} \geq 0$ and is 0 if $\boldsymbol{u}=0$. So $\tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$ is the minimizer.

Computational complexity

Bottleneck of computing

$$
\tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

is to invert the matrix $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \in \mathbb{R}^{(\mathrm{D}+1) \times(\mathrm{D}+1)}$

- naively need $O\left(\mathrm{D}^{3}\right)$ time

Computational complexity

Bottleneck of computing

$$
\tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

is to invert the matrix $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \in \mathbb{R}^{(\mathrm{D}+1) \times(\mathrm{D}+1)}$

- naively need $O\left(\mathrm{D}^{3}\right)$ time
- there are many faster approaches (such as conjugate gradient)

What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

What does that imply?

What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

What does that imply?

Recall $\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \boldsymbol{w}^{*}=\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$.

What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

What does that imply?

Recall $\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \boldsymbol{w}^{*}=\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$. If $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ not invertible, this equation has

- no solution

What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

What does that imply?

Recall $\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \boldsymbol{w}^{*}=\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$. If $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ not invertible, this equation has

- no solution
- or infinitely many solutions

What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

What does that imply?

Recall $\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \boldsymbol{w}^{*}=\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$. If $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ not invertible, this equation has

- no solution (\Rightarrow RSS has no minimizer? x)
- or infinitely many solutions (\Rightarrow infinitely many minimizers \checkmark)

What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

Why would that happen?

What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

Why would that happen?

One situation: $\mathrm{N}<\mathrm{D}+1$, i.e. not enough data to estimate all parameters.

What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

Why would that happen?

One situation: $\mathrm{N}<\mathrm{D}+1$, i.e. not enough data to estimate all parameters.

Example: $\mathrm{D}=\mathrm{N}=1$

sqft	sale price
1000	500 K

What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

Why would that happen?

One situation: $\mathrm{N}<\mathrm{D}+1$, i.e. not enough data to estimate all parameters.

Example: $\mathrm{D}=\mathrm{N}=1$

sqft	sale price
1000	500 K

Any line passing this single point is a minimizer of RSS.

How about the following?

$\mathrm{D}=1, \mathrm{~N}=2$

sqft	sale price
1000	500 K
1000	600 K

How about the following?

$\mathrm{D}=1, \mathrm{~N}=2$

sqft	sale price
1000	500 K
1000	600 K

Any line passing the average is a minimizer of RSS.

How about the following?

$\mathrm{D}=1, \mathrm{~N}=2$

sqft	sale price
1000	500 K
1000	600 K

Any line passing the average is a minimizer of RSS.
$\mathrm{D}=2, \mathrm{~N}=3 ?$

sqft	\#bedroom	sale price
1000	2	500 K
1500	3	700 K
2000	4	800 K

How about the following?

$\mathrm{D}=1, \mathrm{~N}=2$

sqft	sale price
1000	500 K
1000	600 K

Any line passing the average is a minimizer of RSS.
$\mathrm{D}=2, \mathrm{~N}=3 ?$

sqft	\#bedroom	sale price
1000	2	500 K
1500	3	700 K
2000	4	800 K

Again infinitely many minimizers.

How to resolve this issue?

Intuition: what does inverting $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ do?

$$
\text { eigendecomposition: } \quad \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}=\boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \lambda_{\mathrm{D}} & 0 \\
0 & \cdots & 0 & \lambda_{\mathrm{D}+1}
\end{array}\right] \boldsymbol{U}
$$

where $\lambda_{1} \geq \lambda_{2} \geq \cdots \lambda_{\mathrm{D}+1} \geq 0$ are eigenvalues.

How to resolve this issue?

Intuition: what does inverting $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ do?

$$
\text { eigendecomposition: } \quad \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}=\boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \lambda_{\mathrm{D}} & 0 \\
0 & \cdots & 0 & \lambda_{\mathrm{D}+1}
\end{array}\right] \boldsymbol{U}
$$

where $\lambda_{1} \geq \lambda_{2} \geq \cdots \lambda_{\mathrm{D}+1} \geq 0$ are eigenvalues.

$$
\text { inverse: } \quad\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1}=\boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc}
\frac{1}{\lambda_{1}} & 0 & \cdots & 0 \\
0 & \frac{1}{\lambda_{2}} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \frac{1}{\lambda_{\mathrm{D}}} & 0 \\
0 & \cdots & 0 & \frac{1}{\lambda_{\mathrm{D}+1}}
\end{array}\right] \boldsymbol{U}
$$

i.e. just invert the eigenvalues

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0 .

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0 .
One natural fix: add something positive

$$
\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}+\lambda \boldsymbol{I}=\boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc}
\lambda_{1}+\lambda & 0 & \cdots & 0 \\
0 & \lambda_{2}+\lambda & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \lambda_{\mathrm{D}}+\lambda & 0 \\
0 & \cdots & 0 & \lambda_{\mathrm{D}+1}+\lambda
\end{array}\right] \boldsymbol{U}
$$

where $\lambda>0$ and \boldsymbol{I} is the identity matrix.

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0 .
One natural fix: add something positive

$$
\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}+\lambda \boldsymbol{I}=\boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc}
\lambda_{1}+\lambda & 0 & \cdots & 0 \\
0 & \lambda_{2}+\lambda & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \lambda_{\mathrm{D}}+\lambda & 0 \\
0 & \cdots & 0 & \lambda_{\mathrm{D}+1}+\lambda
\end{array}\right] \boldsymbol{U}
$$

where $\lambda>0$ and \boldsymbol{I} is the identity matrix. Now it is invertible:

$$
\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}+\lambda \boldsymbol{I}\right)^{-1}=\boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc}
\frac{1}{\lambda_{1}+\lambda} & 0 & \cdots & 0 \\
0 & \frac{1}{\lambda_{2}+\lambda} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \frac{1}{\lambda_{\mathrm{D}}+\lambda} & 0 \\
0 & \cdots & 0 & \frac{1}{\lambda_{\mathrm{D}+1}+\lambda}
\end{array}\right] \boldsymbol{U}
$$

Fix the problem

The solution becomes

$$
\tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}+\lambda \boldsymbol{I}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

Fix the problem

The solution becomes

$$
\tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}+\lambda \boldsymbol{I}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

- not a minimizer of the original RSS

Fix the problem

The solution becomes

$$
\tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}+\lambda \boldsymbol{I}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

- not a minimizer of the original RSS
- more than an arbitrary hack (as we will see soon)

Fix the problem

The solution becomes

$$
\tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}+\lambda \boldsymbol{I}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

- not a minimizer of the original RSS
- more than an arbitrary hack (as we will see soon)
λ is a hyper-parameter, can be tuned by cross-validation.

Comparison to NNC

Non-parametric versus Parametric

- Non-parametric methods: the size of the model grows with the size of the training set.
- e.g. NNC, the training set itself needs to be kept in order to predict. Thus, the size of the model is the size of the training set.

Comparison to NNC

Non-parametric versus Parametric

- Non-parametric methods: the size of the model grows with the size of the training set.
- e.g. NNC, the training set itself needs to be kept in order to predict. Thus, the size of the model is the size of the training set.
- Parametric methods: the size of the model does not grow with the size of the training set N .
- e.g. linear regression, $D+1$ parameters, independent of N.

Outline

(1) Linear regression
(2) Linear regression with nonlinear basis
(3) Overfitting and preventing overfitting

4 Linear Classifiers and Surrogate Losses
(5) A Detour of Numerical Optimization Methods

6 Perceptron
(7) Logistic Regression

What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$
\boldsymbol{\phi}(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{D} \rightarrow \boldsymbol{z} \in \mathbb{R}^{M}
$$

to transform the data to a more complicated feature space

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$
\boldsymbol{\phi}(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{D} \rightarrow \boldsymbol{z} \in \mathbb{R}^{M}
$$

to transform the data to a more complicated feature space
2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$
\boldsymbol{\phi}(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{D} \rightarrow \boldsymbol{z} \in \mathbb{R}^{M}
$$

to transform the data to a more complicated feature space
2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

Regression with nonlinear basis

Model: $f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$ where $\boldsymbol{w} \in \mathbb{R}^{M}$

Regression with nonlinear basis

Model: $f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$ where $\boldsymbol{w} \in \mathbb{R}^{M}$
Objective:

$$
\operatorname{RSS}(\boldsymbol{w})=\sum_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)-y_{n}\right)^{2}
$$

Regression with nonlinear basis

Model: $f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$ where $\boldsymbol{w} \in \mathbb{R}^{M}$
Objective:

$$
\operatorname{RSS}(\boldsymbol{w})=\sum_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)-y_{n}\right)^{2}
$$

Similar least square solution:

$$
\boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y} \quad \text { where } \quad \boldsymbol{\Phi}=\left(\begin{array}{c}
\boldsymbol{\phi}\left(\boldsymbol{x}_{1}\right)^{\mathrm{T}} \\
\boldsymbol{\phi}\left(\boldsymbol{x}_{2}\right)^{\mathrm{T}} \\
\vdots \\
\boldsymbol{\phi}\left(\boldsymbol{x}_{N}\right)^{\mathrm{T}}
\end{array}\right) \in \mathbb{R}^{N \times M}
$$

Example

Polynomial basis functions for $\mathrm{D}=1$

$$
\phi(x)=\left[\begin{array}{c}
1 \\
x \\
x^{2} \\
\vdots
\end{array}\right] \Rightarrow f(x)=w_{0}+\sum_{m=1}^{M} w_{m} x^{m}
$$

Example

Polynomial basis functions for $\mathrm{D}=1$

$$
\boldsymbol{\phi}(x)=\left[\begin{array}{c}
1 \\
x \\
x^{2} \\
\vdots \\
x^{M}
\end{array}\right] \Rightarrow f(x)=w_{0}+\sum_{m=1}^{M} w_{m} x^{m}
$$

Learning a linear model in the new space
= learning an M-degree polynomial model in the original space

Example

Fitting a noisy sine function with a polynomial ($M=0,1$, or 3):

Example

Fitting a noisy sine function with a polynomial ($M=0,1$, or 3):

Example

Fitting a noisy sine function with a polynomial ($M=0,1$, or 3):

Why nonlinear?

Can I use a fancy linear feature map?

$$
\boldsymbol{\phi}(\boldsymbol{x})=\left[\begin{array}{c}
x_{1}-x_{2} \\
3 x_{4}-x_{3} \\
2 x_{1}+x_{4}+x_{5} \\
\vdots
\end{array}\right]=\boldsymbol{A} \boldsymbol{x} \quad \text { for some } \boldsymbol{A} \in \mathbb{R}^{\mathrm{M} \times \mathrm{D}}
$$

Why nonlinear?

Can I use a fancy linear feature map?

$$
\boldsymbol{\phi}(\boldsymbol{x})=\left[\begin{array}{c}
x_{1}-x_{2} \\
3 x_{4}-x_{3} \\
2 x_{1}+x_{4}+x_{5} \\
\vdots
\end{array}\right]=\boldsymbol{A} \boldsymbol{x} \quad \text { for some } \boldsymbol{A} \in \mathbb{R}^{\mathrm{M} \times \mathrm{D}}
$$

No, it basically does nothing since

$$
\min _{\boldsymbol{w} \in \mathbb{R}^{\mathrm{M}}} \sum_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_{n}-y_{n}\right)^{2}=\min _{\boldsymbol{w}^{\prime} \in \operatorname{lm}\left(\boldsymbol{A}^{\mathrm{T}}\right) \subset \mathbb{R}^{\mathrm{D}}} \sum_{n}\left(\boldsymbol{w}^{\prime \mathrm{T}} \boldsymbol{x}_{n}-y_{n}\right)^{2}
$$

Why nonlinear?

Can I use a fancy linear feature map?

$$
\boldsymbol{\phi}(\boldsymbol{x})=\left[\begin{array}{c}
x_{1}-x_{2} \\
3 x_{4}-x_{3} \\
2 x_{1}+x_{4}+x_{5} \\
\vdots
\end{array}\right]=\boldsymbol{A} \boldsymbol{x} \quad \text { for some } \boldsymbol{A} \in \mathbb{R}^{\mathrm{M} \times \mathrm{D}}
$$

No, it basically does nothing since

$$
\min _{\boldsymbol{w} \in \mathbb{R}^{\mathrm{M}}} \sum_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_{n}-y_{n}\right)^{2}=\min _{\boldsymbol{w}^{\prime} \in \operatorname{lm}\left(\boldsymbol{A}^{\mathrm{T}}\right) \subset \mathbb{R}^{\mathrm{D}}} \sum_{n}\left(\boldsymbol{w}^{\prime \mathrm{T}} \boldsymbol{x}_{n}-y_{n}\right)^{2}
$$

We will see more nonlinear mappings soon.

Outline

(1) Linear regression
(2) Linear regression with nonlinear basis
(3) Overfitting and preventing overfitting

4 Linear Classifiers and Surrogate Losses
(5) A Detour of Numerical Optimization Methods

6 Perceptron
(7) Logistic Regression

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

Underfitting and Overfitting

$M \leq 2$ is underfitting the data

- large training error
- large test error
$M \geq 9$ is overfitting the data
- small training error
- large test error

Underfitting and Overfitting

$M \leq 2$ is underfitting the data

- large training error
- large test error
$M \geq 9$ is overfitting the data
- small training error
- large test error

More complicated models \Rightarrow larger gap between training and test error

Underfitting and Overfitting

$M \leq 2$ is underfitting the data

- large training error
- large test error
$M \geq 9$ is overfitting the data
- small training error
- large test error

More complicated models \Rightarrow larger gap between training and test error How to prevent overfitting?

Method 1: use more training data

The more, the merrier

Method 1: use more training data

The more, the merrier

Method 1: use more training data

The more, the merrier

Method 1: use more training data

The more, the merrier

More data \Rightarrow smaller gap between training and test error

Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

- use cross-validation to pick hyper-parameter M

Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

- use cross-validation to pick hyper-parameter M

When M or in general Φ is fixed, are there still other ways to control complexity?

Magnitude of weights

Least square solution for the polynomial example:

	$M=0$	$M=1$	$M=3$	$M=9$
w_{0}	0.19	0.82	0.31	0.35
w_{1}		-1.27	7.99	232.37
w_{2}			-25.43	-5321.83
w_{3}			17.37	48568.31
w_{4}				-231639.30
w_{5}				640042.26
w_{6}				-1061800.52
w_{7}				1042400.18
w_{8}				-557682.99
w_{9}				125201.43

Magnitude of weights

Least square solution for the polynomial example:

	$M=0$	$M=1$	$M=3$	$M=9$
w_{0}	0.19	0.82	0.31	0.35
w_{1}		-1.27	7.99	232.37
w_{2}			-25.43	-5321.83
w_{3}			17.37	48568.31
w_{4}				-231639.30
w_{5}				640042.26
w_{6}				-1061800.52
w_{7}				1042400.18
w_{8}				-557682.99
w_{9}				125201.43

Intuitively, large weights \Rightarrow more complex model

How to make w small?

Regularized linear regression: new objective

$$
\mathcal{E}(\boldsymbol{w})=\operatorname{RSS}(\boldsymbol{w})+\lambda R(\boldsymbol{w})
$$

Goal: find $\boldsymbol{w}^{*}=\operatorname{argmin}_{w} \mathcal{E}(\boldsymbol{w})$

How to make w small?

Regularized linear regression: new objective

$$
\mathcal{E}(\boldsymbol{w})=\operatorname{RSS}(\boldsymbol{w})+\lambda R(\boldsymbol{w})
$$

Goal: find $\boldsymbol{w}^{*}=\operatorname{argmin}_{w} \mathcal{E}(\boldsymbol{w})$

- $R: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}^{+}$is the regularizer
- measure how complex the model \boldsymbol{w} is, penalize complex models
- common choices: $\|\boldsymbol{w}\|_{2}^{2},\|\boldsymbol{w}\|_{1}$, etc.

How to make w small?

Regularized linear regression: new objective

$$
\mathcal{E}(\boldsymbol{w})=\operatorname{RSS}(\boldsymbol{w})+\lambda R(\boldsymbol{w})
$$

Goal: find $\boldsymbol{w}^{*}=\operatorname{argmin}_{w} \mathcal{E}(\boldsymbol{w})$

- $R: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}^{+}$is the regularizer
- measure how complex the model \boldsymbol{w} is, penalize complex models
- common choices: $\|\boldsymbol{w}\|_{2}^{2},\|\boldsymbol{w}\|_{1}$, etc.
- $\lambda>0$ is the regularization coefficient
- $\lambda=0$, no regularization
- $\lambda \rightarrow+\infty, \boldsymbol{w} \rightarrow \operatorname{argmin}_{w} R(\boldsymbol{w})$
- i.e. control trade-off between training error and complexity

The effect of λ

when we increase regularization coefficient λ

	$\ln \lambda=-\infty$	$\ln \lambda=-18$	$\ln \lambda=0$
w_{0}	0.35	0.35	0.13
w_{1}	232.37	4.74	-0.05
w_{2}	-5321.83	-0.77	-0.06
w_{3}	48568.31	-31.97	-0.06
w_{4}	-231639.30	-3.89	-0.03
w_{5}	640042.26	55.28	-0.02
w_{6}	-1061800.52	41.32	-0.01
w_{7}	1042400.18	-45.95	-0.00
w_{8}	-557682.99	-91.53	0.00
w_{9}	125201.43	72.68	0.01

The trade-off

when we increase regularization coefficient λ

The trade-off

when we increase regularization coefficient λ

The trade-off

when we increase regularization coefficient λ

The trade-off

when we increase regularization coefficient λ

How to solve the new objective?

Simple for $R(\boldsymbol{w})=\|\boldsymbol{w}\|_{2}^{2}$:

$$
\mathcal{E}(\boldsymbol{w})=\operatorname{RSS}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}=\|\boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2}
$$

How to solve the new objective?

Simple for $R(\boldsymbol{w})=\|\boldsymbol{w}\|_{2}^{2}$:

$$
\begin{gathered}
\mathcal{E}(\boldsymbol{w})=\operatorname{RSS}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}=\|\boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2} \\
\nabla \mathcal{E}(\boldsymbol{w})=2\left(\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{\Phi} \boldsymbol{w}-\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}\right)+2 \lambda \boldsymbol{w}=0
\end{gathered}
$$

How to solve the new objective?

Simple for $R(\boldsymbol{w})=\|\boldsymbol{w}\|_{2}^{2}$:

$$
\begin{aligned}
\mathcal{E}(\boldsymbol{w}) & =\operatorname{RSS}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}=\|\boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2} \\
& \nabla \mathcal{E}(\boldsymbol{w})=2\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}\right)+2 \lambda \boldsymbol{w}=0 \\
& \Rightarrow\left(\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{\Phi}+\lambda \boldsymbol{I}\right) \boldsymbol{w}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
\end{aligned}
$$

How to solve the new objective?

Simple for $R(\boldsymbol{w})=\|\boldsymbol{w}\|_{2}^{2}$:

$$
\begin{aligned}
\mathcal{E}(\boldsymbol{w}) & =\operatorname{RSS}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}=\|\boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2} \\
& \nabla \mathcal{E}(\boldsymbol{w})=2\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}\right)+2 \lambda \boldsymbol{w}=0 \\
& \Rightarrow\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right) \boldsymbol{w}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y} \\
& \Rightarrow \boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
\end{aligned}
$$

How to solve the new objective?

Simple for $R(\boldsymbol{w})=\|\boldsymbol{w}\|_{2}^{2}$:

$$
\begin{aligned}
\mathcal{E}(\boldsymbol{w}) & =\operatorname{RSS}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}=\|\boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2} \\
& \nabla \mathcal{E}(\boldsymbol{w})=2\left(\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{\Phi} \boldsymbol{w}-\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}\right)+2 \lambda \boldsymbol{w}=0 \\
& \Rightarrow\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right) \boldsymbol{w}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y} \\
& \Rightarrow \boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
\end{aligned}
$$

Note the same form as in the fix when $\boldsymbol{X}^{T} \boldsymbol{X}$ is not invertible!

How to solve the new objective?

Simple for $R(\boldsymbol{w})=\|\boldsymbol{w}\|_{2}^{2}$:

$$
\begin{aligned}
\mathcal{E}(\boldsymbol{w}) & =\operatorname{RSS}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}=\|\boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2} \\
& \nabla \mathcal{E}(\boldsymbol{w})=2\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}\right)+2 \lambda \boldsymbol{w}=0 \\
& \Rightarrow\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right) \boldsymbol{w}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y} \\
& \Rightarrow \boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
\end{aligned}
$$

Note the same form as in the fix when $\boldsymbol{X}^{T} \boldsymbol{X}$ is not invertible!
For other regularizers, as long as it's convex, standard optimization algorithms can be applied.

Equivalent form

Regularization is also sometimes formulated as

$$
\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text { subject to } R(\boldsymbol{w}) \leq \beta
$$

where β is some hyper-parameter.

Equivalent form

Regularization is also sometimes formulated as

$$
\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text { subject to } R(\boldsymbol{w}) \leq \beta
$$

where β is some hyper-parameter.

Finding the solution becomes a constrained optimization problem.

Equivalent form

Regularization is also sometimes formulated as

$$
\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text { subject to } R(\boldsymbol{w}) \leq \beta
$$

where β is some hyper-parameter.

Finding the solution becomes a constrained optimization problem.

Choosing either λ or β can be done by cross-validation.

Summary

$$
\boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
$$

Summary

$$
\boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
$$

Important to understand the derivation than remembering the formula

Summary

$$
\boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

Summary

$$
\boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error
Preventing Overfitting: more data + regularization

Recall the question

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the red part exactly?

General idea to derive ML algorithms

1. Pick a set of models \mathcal{F}

- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}\right\}$
- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{M}}\right\}$

General idea to derive ML algorithms

1. Pick a set of models \mathcal{F}

- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}\right\}$
- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{M}}\right\}$

2. Define error/loss $L\left(y^{\prime}, y\right)$

General idea to derive ML algorithms

1. Pick a set of models \mathcal{F}

- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}\right\}$
- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{M}}\right\}$

2. Define error/loss $L\left(y^{\prime}, y\right)$
3. Find empirical risk minimizer (ERM):

$$
\boldsymbol{f}^{*}=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L\left(f\left(x_{n}\right), y_{n}\right)
$$

General idea to derive ML algorithms

1. Pick a set of models \mathcal{F}

- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}\right\}$
- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{M}}\right\}$

2. Define error/loss $L\left(y^{\prime}, y\right)$
3. Find empirical risk minimizer (ERM):

$$
\boldsymbol{f}^{*}=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L\left(f\left(x_{n}\right), y_{n}\right)
$$

or regularized empirical risk minimizer:

$$
\boldsymbol{f}^{*}=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L\left(f\left(x_{n}\right), y_{n}\right)+\lambda R(f)
$$

General idea to derive ML algorithms

1. Pick a set of models \mathcal{F}

- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}\right\}$
- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{M}}\right\}$

2. Define error/loss $L\left(y^{\prime}, y\right)$
3. Find empirical risk minimizer (ERM):

$$
\boldsymbol{f}^{*}=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L\left(f\left(x_{n}\right), y_{n}\right)
$$

or regularized empirical risk minimizer:

$$
\boldsymbol{f}^{*}=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L\left(f\left(x_{n}\right), y_{n}\right)+\lambda R(f)
$$

ML becomes optimization

Outline

(1) Linear regression
(2) Linear regression with nonlinear basis
(3) Overfitting and preventing overfitting
(4) Linear Classifiers and Surrogate Losses
(5) A Detour of Numerical Optimization Methods

6 Perceptron
(7) Logistic Regression

Classification

Recall the setup:

- input (feature vector): $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$
- output (label): $y \in[\mathrm{C}]=\{1,2, \cdots, \mathrm{C}\}$
- goal: learn a mapping $f: \mathbb{R}^{\mathrm{D}} \rightarrow[\mathrm{C}]$

Classification

Recall the setup:

- input (feature vector): $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$
- output (label): $y \in[\mathrm{C}]=\{1,2, \cdots, \mathrm{C}\}$
- goal: learn a mapping $f: \mathbb{R}^{\mathrm{D}} \rightarrow[\mathrm{C}]$

This lecture: binary classification

- Number of classes: $\mathrm{C}=2$
- Labels: $\{-1,+1\}$ (cat or dog, fraud or not, price up or down...)

Classification

Recall the setup:

- input (feature vector): $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$
- output (label): $y \in[\mathrm{C}]=\{1,2, \cdots, \mathrm{C}\}$
- goal: learn a mapping $f: \mathbb{R}^{\mathrm{D}} \rightarrow[\mathrm{C}]$

This lecture: binary classification

- Number of classes: $\mathrm{C}=2$
- Labels: $\{-1,+1\}$ (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:

- require carrying the training set
- more like a heuristic

Deriving classification algorithms

Let's follow the recipe:
Step 1. Pick a set of models \mathcal{F}.

Deriving classification algorithms

Let's follow the recipe:
Step 1. Pick a set of models \mathcal{F}.
Again try linear models, but how to predict a label using $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$?

Deriving classification algorithms

Let's follow the recipe:
Step 1. Pick a set of models \mathcal{F}.
Again try linear models, but how to predict a label using $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$?

Deriving classification algorithms

Let's follow the recipe:
Step 1. Pick a set of models \mathcal{F}.
Again try linear models, but how to predict a label using $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$?
Sign of $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$ predicts the label:

$$
\operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)= \begin{cases}+1 & \text { if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}>0 \\ -1 & \text { if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \leq 0\end{cases}
$$

(Sometimes use sgn for sign too.)

The models

The set of (separating) hyperplanes:

$$
\mathcal{F}=\left\{f(\boldsymbol{x})=\operatorname{sgn}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right) \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}\right\}
$$

The models

The set of (separating) hyperplanes:

$$
\mathcal{F}=\left\{f(\boldsymbol{x})=\operatorname{sgn}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right) \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}\right\}
$$

Good choice for linearly separable data, i.e., $\exists \boldsymbol{w}$ s.t.

$$
\operatorname{sgn}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{\boldsymbol{n}}\right)=y_{n}
$$

for all $n \in[N]$.

The models

The set of (separating) hyperplanes:

$$
\mathcal{F}=\left\{f(\boldsymbol{x})=\operatorname{sgn}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right) \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}\right\}
$$

Good choice for linearly separable data, i.e., $\exists \boldsymbol{w}$ s.t.

$$
\operatorname{sgn}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{\boldsymbol{n}}\right)=y_{n} \quad \text { or } \quad y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{\boldsymbol{n}}>0
$$

for all $n \in[N]$.

The models

Still makes sense for "almost" linearly separable data

The models

For clearly not linearly separable data,

The models

For clearly not linearly separable data,

Again can apply a nonlinear mapping $\boldsymbol{\Phi}$:

$$
\mathcal{F}=\left\{f(\boldsymbol{x})=\operatorname{sgn}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{x})\right) \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{M}}\right\}
$$

More discussions in the next two lectures.

0-1 Loss

Step 2. Define error/loss $L\left(y^{\prime}, y\right)$.

0-1 Loss

Step 2. Define error/loss $L\left(y^{\prime}, y\right)$.
Most natural one for classification: 0-1 loss $L\left(y^{\prime}, y\right)=\mathbb{I}\left[y^{\prime} \neq y\right]$

0-1 Loss

Step 2. Define error/loss $L\left(y^{\prime}, y\right)$.
Most natural one for classification: 0-1 loss $L\left(y^{\prime}, y\right)=\mathbb{I}\left[y^{\prime} \neq y\right]$
For classification, more convenient to look at the loss as a function of $y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$. That is, with

$$
\ell_{0-1}(z)=\mathbb{I}[z \leq 0]
$$

the loss for hyperplane \boldsymbol{w} on example (\boldsymbol{x}, y) is $\ell_{0-1}\left(y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)$

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

Even worse, minimizing 0-1 loss is NP-hard in general.

Surrogate Losses

Solution: find a convex surrogate loss

Surrogate Losses

Solution: find a convex surrogate loss

- perceptron loss $\ell_{\text {perceptron }}(z)=\max \{0,-z\}$ (used in Perceptron)

Surrogate Losses

Solution: find a convex surrogate loss

- perceptron loss $\ell_{\text {perceptron }}(z)=\max \{0,-z\}$ (used in Perceptron)
- hinge loss $\ell_{\text {hinge }}(z)=\max \{0,1-z\}$ (used in SVM and many others)

Surrogate Losses

Solution: find a convex surrogate loss

- perceptron loss $\ell_{\text {perceptron }}(z)=\max \{0,-z\}$ (used in Perceptron)
- hinge loss $\ell_{\text {hinge }}(z)=\max \{0,1-z\}$ (used in SVM and many others)
- logistic loss $\ell_{\text {logistic }}(z)=\log (1+\exp (-z))$ (used in logistic regression; the base of \log doesn't matter)

ML becomes convex optimization

Step 3. Find ERM:

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}}{\operatorname{argmin}} \sum_{n=1}^{N} \ell\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)=\underset{\boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \ell\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)
$$

where $\ell(\cdot)$ can be perceptron/hinge/logistic loss

ML becomes convex optimization

Step 3. Find ERM:

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}}{\operatorname{argmin}} \sum_{n=1}^{N} \ell\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)=\underset{\boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \ell\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)
$$

where $\ell(\cdot)$ can be perceptron/hinge/logistic loss

- no closed-form in general (unlike linear regression)

ML becomes convex optimization

Step 3. Find ERM:

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}}{\operatorname{argmin}} \sum_{n=1}^{N} \ell\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)=\underset{\boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \ell\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)
$$

where $\ell(\cdot)$ can be perceptron/hinge/logistic loss

- no closed-form in general (unlike linear regression)
- can apply general convex optimization methods

ML becomes convex optimization

Step 3. Find ERM:

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}}{\operatorname{argmin}} \sum_{n=1}^{N} \ell\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)=\underset{\boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \ell\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)
$$

where $\ell(\cdot)$ can be perceptron/hinge/logistic loss

- no closed-form in general (unlike linear regression)
- can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense

ML becomes convex optimization

Step 3. Find ERM:

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}}{\operatorname{argmin}} \sum_{n=1}^{N} \ell\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)=\underset{\boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \ell\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)
$$

where $\ell(\cdot)$ can be perceptron/hinge/logistic loss

- no closed-form in general (unlike linear regression)
- can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense ($\operatorname{try} \boldsymbol{w}=\mathbf{0}$), but the algorithm derived from this perspective does.

Datasets

Training data

- N samples/instances: $\mathcal{D}^{\text {TRAIN }}=\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \cdots,\left(\boldsymbol{x}_{\mathrm{N}}, y_{\mathrm{N}}\right)\right\}$
- They are used to learn $f(\cdot)$

Test data

- M samples/instances: $\mathcal{D}^{\text {TEST }}=\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \cdots,\left(\boldsymbol{x}_{\mathrm{M}}, y_{\mathrm{M}}\right)\right\}$
- They are used to evaluate how well $f(\cdot)$ will do.

Development/Validation data

- L samples/instances: $\mathcal{D}^{\text {DEV }}=\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \cdots,\left(\boldsymbol{x}_{\mathrm{L}}, y_{\mathrm{L}}\right)\right\}$
- They are used to optimize hyper-parameter(s).

These three sets should not overlap!

S-fold Cross-validation

What if we do not have a development set?

- Split the training data into S

$$
\mathrm{S}=5: 5 \text {-fold cross validation }
$$ equal parts.

- Use each part in turn as a development dataset and use the others as a training dataset.
- Choose the hyper-parameter leading to best average performance.

Special case: $\mathrm{S}=\mathrm{N}$, called leave-one-out.

High level picture

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

High level picture

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

Outline

(1) Linear regression
(2) Linear regression with nonlinear basis
(3) Overfitting and preventing overfitting

4 Linear Classifiers and Surrogate Losses
(5) A Detour of Numerical Optimization Methods

6 Perceptron
(7) Logistic Regression

Numerical optimization

Problem setup

- Given: a function $F(\boldsymbol{w})$
- Goal: minimize $F(\boldsymbol{w})$ (approximately)

First-order optimization methods

Two simple yet extremely popular methods

- Gradient Descent (GD): simple and fundamental
- Stochastic Gradient Descent (SGD): faster, effective for large-scale problems

First-order optimization methods

Two simple yet extremely popular methods

- Gradient Descent (GD): simple and fundamental
- Stochastic Gradient Descent (SGD): faster, effective for large-scale problems

Gradient is sometimes referred to as first-order information of a function. Therefore, these methods are called first-order methods.

Gradient Descent (GD)

GD: keep moving in the negative gradient direction

Gradient Descent (GD)

GD: keep moving in the negative gradient direction Start from some $\boldsymbol{w}^{(0)}$. For $t=0,1,2, \ldots$

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta \nabla F\left(\boldsymbol{w}^{(t)}\right)
$$

where $\eta>0$ is called step size or learning rate

Gradient Descent (GD)

GD: keep moving in the negative gradient direction Start from some $\boldsymbol{w}^{(0)}$. For $t=0,1,2, \ldots$

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta \nabla F\left(\boldsymbol{w}^{(t)}\right)
$$

where $\eta>0$ is called step size or learning rate

- in theory η should be set in terms of some parameters of F

Gradient Descent (GD)

GD: keep moving in the negative gradient direction Start from some $\boldsymbol{w}^{(0)}$. For $t=0,1,2, \ldots$

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta \nabla F\left(\boldsymbol{w}^{(t)}\right)
$$

where $\eta>0$ is called step size or learning rate

- in theory η should be set in terms of some parameters of F
- in practice we just try several small values

Gradient Descent (GD)

GD: keep moving in the negative gradient direction Start from some $\boldsymbol{w}^{(0)}$. For $t=0,1,2, \ldots$

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta \nabla F\left(\boldsymbol{w}^{(t)}\right)
$$

where $\eta>0$ is called step size or learning rate

- in theory η should be set in terms of some parameters of F
- in practice we just try several small values
- might need to be changing over iterations (think $F(w)=|w|$)

Gradient Descent (GD)

GD: keep moving in the negative gradient direction Start from some $\boldsymbol{w}^{(0)}$. For $t=0,1,2, \ldots$

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta \nabla F\left(\boldsymbol{w}^{(t)}\right)
$$

where $\eta>0$ is called step size or learning rate

- in theory η should be set in terms of some parameters of F
- in practice we just try several small values
- might need to be changing over iterations (think $F(w)=|w|$)
- adaptive and automatic step size tuning is an active research area

An example

Example: $F(\boldsymbol{w})=0.5\left(w_{1}^{2}-w_{2}\right)^{2}+0.5\left(w_{1}-1\right)^{2}$.

An example

Example: $F(\boldsymbol{w})=0.5\left(w_{1}^{2}-w_{2}\right)^{2}+0.5\left(w_{1}-1\right)^{2}$. Gradient is

$$
\frac{\partial F}{\partial w_{1}}=2\left(w_{1}^{2}-w_{2}\right) w_{1}+w_{1}-1 \quad \frac{\partial F}{\partial w_{2}}=-\left(w_{1}^{2}-w_{2}\right)
$$

An example

Example: $F(\boldsymbol{w})=0.5\left(w_{1}^{2}-w_{2}\right)^{2}+0.5\left(w_{1}-1\right)^{2}$. Gradient is

$$
\frac{\partial F}{\partial w_{1}}=2\left(w_{1}^{2}-w_{2}\right) w_{1}+w_{1}-1 \quad \frac{\partial F}{\partial w_{2}}=-\left(w_{1}^{2}-w_{2}\right)
$$

GD:

- Initialize $w_{1}^{(0)}$ and $w_{2}^{(0)}$ (to be 0 or randomly), $t=0$

An example

Example: $F(\boldsymbol{w})=0.5\left(w_{1}^{2}-w_{2}\right)^{2}+0.5\left(w_{1}-1\right)^{2}$. Gradient is

$$
\frac{\partial F}{\partial w_{1}}=2\left(w_{1}^{2}-w_{2}\right) w_{1}+w_{1}-1 \quad \frac{\partial F}{\partial w_{2}}=-\left(w_{1}^{2}-w_{2}\right)
$$

GD:

- Initialize $w_{1}^{(0)}$ and $w_{2}^{(0)}$ (to be 0 or randomly), $t=0$
- do

$$
\begin{aligned}
w_{1}^{(t+1)} & \leftarrow w_{1}^{(t)}-\eta\left[2\left(w_{1}^{(t)^{2}}-w_{2}^{(t)}\right) w_{1}^{(t)}+w_{1}^{(t)}-1\right] \\
w_{2}^{(t+1)} & \leftarrow w_{2}^{(t)}-\eta\left[-\left(w_{1}^{(t)^{2}}-w_{2}^{(t)}\right)\right] \\
t & \leftarrow t+1
\end{aligned}
$$

An example

Example: $F(\boldsymbol{w})=0.5\left(w_{1}^{2}-w_{2}\right)^{2}+0.5\left(w_{1}-1\right)^{2}$. Gradient is

$$
\frac{\partial F}{\partial w_{1}}=2\left(w_{1}^{2}-w_{2}\right) w_{1}+w_{1}-1 \quad \frac{\partial F}{\partial w_{2}}=-\left(w_{1}^{2}-w_{2}\right)
$$

GD:

- Initialize $w_{1}^{(0)}$ and $w_{2}^{(0)}$ (to be 0 or randomly), $t=0$
- do

$$
\begin{aligned}
w_{1}^{(t+1)} & \leftarrow w_{1}^{(t)}-\eta\left[2\left(w_{1}^{(t)^{2}}-w_{2}^{(t)}\right) w_{1}^{(t)}+w_{1}^{(t)}-1\right] \\
w_{2}^{(t+1)} & \leftarrow w_{2}^{(t)}-\eta\left[-\left(w_{1}^{(t)^{2}}-w_{2}^{(t)}\right)\right] \\
t & \leftarrow t+1
\end{aligned}
$$

- until $F\left(\boldsymbol{w}^{(t)}\right)$ does not change much or t reaches a fixed number

Why GD?

Intuition: by first-order Taylor approximation

$$
F(\boldsymbol{w}) \approx F\left(\boldsymbol{w}^{(t)}\right)+\nabla F\left(\boldsymbol{w}^{(t)}\right)^{\mathrm{T}}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right)
$$

Why GD?

Intuition: by first-order Taylor approximation

$$
F(\boldsymbol{w}) \approx F\left(\boldsymbol{w}^{(t)}\right)+\nabla F\left(\boldsymbol{w}^{(t)}\right)^{\mathrm{T}}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right)
$$

GD ensures

$$
F\left(\boldsymbol{w}^{(t+1)}\right) \approx F\left(\boldsymbol{w}^{(t)}\right)-\eta\left\|\nabla F\left(\boldsymbol{w}^{(t)}\right)\right\|_{2}^{2} \leq F\left(\boldsymbol{w}^{(t)}\right)
$$

Why GD?

Intuition: by first-order Taylor approximation

$$
F(\boldsymbol{w}) \approx F\left(\boldsymbol{w}^{(t)}\right)+\nabla F\left(\boldsymbol{w}^{(t)}\right)^{\mathrm{T}}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right)
$$

GD ensures

$$
F\left(\boldsymbol{w}^{(t+1)}\right) \approx F\left(\boldsymbol{w}^{(t)}\right)-\eta\left\|\nabla F\left(\boldsymbol{w}^{(t)}\right)\right\|_{2}^{2} \leq F\left(\boldsymbol{w}^{(t)}\right)
$$

reasonable η decreases function value

Why GD?

Intuition: by first-order Taylor approximation

$$
F(\boldsymbol{w}) \approx F\left(\boldsymbol{w}^{(t)}\right)+\nabla F\left(\boldsymbol{w}^{(t)}\right)^{\mathrm{T}}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right)
$$

GD ensures

$$
F\left(\boldsymbol{w}^{(t+1)}\right) \approx F\left(\boldsymbol{w}^{(t)}\right)-\eta\left\|\nabla F\left(\boldsymbol{w}^{(t)}\right)\right\|_{2}^{2} \leq F\left(\boldsymbol{w}^{(t)}\right)
$$

reasonable η decreases function value

but large η is unstable

Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction
SGD: keep moving in some noisy negative gradient direction

Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction
SGD: keep moving in some noisy negative gradient direction

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta \tilde{\nabla} F\left(\boldsymbol{w}^{(t)}\right)
$$

where $\tilde{\nabla} F\left(\boldsymbol{w}^{(t)}\right)$ is a random variable (called stochastic gradient) s.t.

$$
\mathbb{E}\left[\tilde{\nabla} F\left(\boldsymbol{w}^{(t)}\right)\right]=\nabla F\left(\boldsymbol{w}^{(t)}\right) \quad \text { (unbiasedness) }
$$

Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction
SGD: keep moving in some noisy negative gradient direction

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta \tilde{\nabla} F\left(\boldsymbol{w}^{(t)}\right)
$$

where $\tilde{\nabla} F\left(\boldsymbol{w}^{(t)}\right)$ is a random variable (called stochastic gradient) s.t.

$$
\mathbb{E}\left[\tilde{\nabla} F\left(\boldsymbol{w}^{(t)}\right)\right]=\nabla F\left(\boldsymbol{w}^{(t)}\right) \quad \text { (unbiasedness) }
$$

Key point: it could be much faster to obtain a stochastic gradient! (examples coming soon)

Convergence guarantees - convex objectives

Many for both GD and SGD on convex objectives.

Convergence guarantees - convex objectives

Many for both GD and SGD on convex objectives.

They tell you how many iterations t (in terms of ϵ) needed to achieve

$$
F\left(\boldsymbol{w}^{(t)}\right)-F\left(\boldsymbol{w}^{*}\right) \leq \epsilon
$$

Convergence guarantees - convex objectives

Many for both GD and SGD on convex objectives.

They tell you how many iterations t (in terms of ϵ) needed to achieve

$$
F\left(\boldsymbol{w}^{(t)}\right)-F\left(\boldsymbol{w}^{*}\right) \leq \epsilon
$$

- usually SGD needs more iterations

Convergence guarantees - convex objectives

Many for both GD and SGD on convex objectives.

They tell you how many iterations t (in terms of ϵ) needed to achieve

$$
F\left(\boldsymbol{w}^{(t)}\right)-F\left(\boldsymbol{w}^{*}\right) \leq \epsilon
$$

- usually SGD needs more iterations
- but then again each iteration takes less time

Convergence guarantees - nonconvex objectives

Even for nonconvex objectives, some guarantees exist: e.g. how many iterations t (in terms of ϵ) needed to achieve

$$
\left\|\nabla F\left(\boldsymbol{w}^{(t)}\right)\right\| \leq \epsilon
$$

Convergence guarantees - nonconvex objectives

Even for nonconvex objectives, some guarantees exist: e.g. how many iterations t (in terms of ϵ) needed to achieve

$$
\left\|\nabla F\left(\boldsymbol{w}^{(t)}\right)\right\| \leq \epsilon
$$

- that is, how close $\boldsymbol{w}^{(t)}$ is as an approximate stationary point

Convergence guarantees - nonconvex objectives

Even for nonconvex objectives, some guarantees exist: e.g. how many iterations t (in terms of ϵ) needed to achieve

$$
\left\|\nabla F\left(\boldsymbol{w}^{(t)}\right)\right\| \leq \epsilon
$$

- that is, how close $\boldsymbol{w}^{(t)}$ is as an approximate stationary point
- for convex objectives, stationary point \Rightarrow global minimizer

Convergence guarantees - nonconvex objectives

Even for nonconvex objectives, some guarantees exist: e.g. how many iterations t (in terms of ϵ) needed to achieve

$$
\left\|\nabla F\left(\boldsymbol{w}^{(t)}\right)\right\| \leq \epsilon
$$

- that is, how close $\boldsymbol{w}^{(t)}$ is as an approximate stationary point
- for convex objectives, stationary point \Rightarrow global minimizer
- for nonconvex objectives, what does it mean?

Convergence guarantees - nonconvex objectives

A stationary point can be a local minimizer

$$
f(w)=w^{3}+w^{2}-5 w
$$

Convergence guarantees - nonconvex objectives

A stationary point can be a local minimizer or even a local/global maximizer

$$
f(w)=w^{3}+w^{2}-5 w
$$

Convergence guarantees - nonconvex objectives

A stationary point can be a local minimizer or even a local/global maximizer (but the latter is not an issue for GD/SGD).

$$
f(w)=w^{3}+w^{2}-5 w
$$

Convergence guarantees - nonconvex objectives

A stationary point can also be neither a local minimizer nor a local maximizer!

Convergence guarantees - nonconvex objectives

A stationary point can also be neither a local minimizer nor a local maximizer!

- $f(\boldsymbol{w})=w_{1}^{2}-w_{2}^{2}$

Convergence guarantees - nonconvex objectives

A stationary point can also be neither a local minimizer nor a local maximizer!

- $f(\boldsymbol{w})=w_{1}^{2}-w_{2}^{2}$
- $\nabla f(\boldsymbol{w})=\left(2 w_{1},-2 w_{2}\right)$

Convergence guarantees - nonconvex objectives

A stationary point can also be neither a local minimizer nor a local maximizer!

- $f(\boldsymbol{w})=w_{1}^{2}-w_{2}^{2}$
- $\nabla f(\boldsymbol{w})=\left(2 w_{1},-2 w_{2}\right)$
- so $\boldsymbol{w}=(0,0)$ is stationary

Convergence guarantees - nonconvex objectives

A stationary point can also be neither a local minimizer nor a local maximizer!

- $f(\boldsymbol{w})=w_{1}^{2}-w_{2}^{2}$
- $\nabla f(\boldsymbol{w})=\left(2 w_{1},-2 w_{2}\right)$
- so $\boldsymbol{w}=(0,0)$ is stationary
- local max for blue direction $\left(w_{1}=0\right)$

Convergence guarantees - nonconvex objectives

A stationary point can also be neither a local minimizer nor a local maximizer!

- $f(\boldsymbol{w})=w_{1}^{2}-w_{2}^{2}$
- $\nabla f(\boldsymbol{w})=\left(2 w_{1},-2 w_{2}\right)$
- so $\boldsymbol{w}=(0,0)$ is stationary
- local max for blue direction $\left(w_{1}=0\right)$

- local min for green direction $\left(w_{2}=0\right)$

Convergence guarantees - nonconvex objectives

A stationary point can also be neither a local minimizer nor a local maximizer! This is called a saddle point.

- $f(\boldsymbol{w})=w_{1}^{2}-w_{2}^{2}$
- $\nabla f(\boldsymbol{w})=\left(2 w_{1},-2 w_{2}\right)$
- so $\boldsymbol{w}=(0,0)$ is stationary
- local max for blue direction $\left(w_{1}=0\right)$

- local min for green direction $\left(w_{2}=0\right)$

Convergence guarantees - nonconvex objectives

A stationary point can also be neither a local minimizer nor a local maximizer! This is called a saddle point.

- $f(\boldsymbol{w})=w_{1}^{2}-w_{2}^{2}$
- $\nabla f(\boldsymbol{w})=\left(2 w_{1},-2 w_{2}\right)$
- so $\boldsymbol{w}=(0,0)$ is stationary
- local max for blue direction $\left(w_{1}=0\right)$

- local min for green direction $\left(w_{2}=0\right)$
- but GD gets stuck at $(0,0)$ only if initialized along the green direction

Convergence guarantees - nonconvex objectives

A stationary point can also be neither a local minimizer nor a local maximizer! This is called a saddle point.

- $f(\boldsymbol{w})=w_{1}^{2}-w_{2}^{2}$
- $\nabla f(\boldsymbol{w})=\left(2 w_{1},-2 w_{2}\right)$
- so $\boldsymbol{w}=(0,0)$ is stationary
- local max for blue direction $\left(w_{1}=0\right)$

- local min for green direction $\left(w_{2}=0\right)$
- but GD gets stuck at $(0,0)$ only if initialized along the green direction
- so not a real issue especially when
 initialized randomly

Convergence guarantees - nonconvex objectives

But not all saddle points look like a "saddle"...

Convergence guarantees - nonconvex objectives

But not all saddle points look like a "saddle"...

- $f(\boldsymbol{w})=w_{1}^{2}+w_{2}^{3}$

Convergence guarantees - nonconvex objectives

But not all saddle points look like a "saddle"...

- $f(\boldsymbol{w})=w_{1}^{2}+w_{2}^{3}$
- $\nabla f(\boldsymbol{w})=\left(2 w_{1}, 3 w_{2}^{2}\right)$

Convergence guarantees - nonconvex objectives

But not all saddle points look like a "saddle"...

- $f(\boldsymbol{w})=w_{1}^{2}+w_{2}^{3}$
- $\nabla f(\boldsymbol{w})=\left(2 w_{1}, 3 w_{2}^{2}\right)$
- so $\boldsymbol{w}=(0,0)$ is stationary

Convergence guarantees - nonconvex objectives

But not all saddle points look like a "saddle"...

- $f(\boldsymbol{w})=w_{1}^{2}+w_{2}^{3}$
- $\nabla f(\boldsymbol{w})=\left(2 w_{1}, 3 w_{2}^{2}\right)$
- so $\boldsymbol{w}=(0,0)$ is stationary
- not local min/max for blue direction $\left(w_{1}=0\right)$

Convergence guarantees - nonconvex objectives

But not all saddle points look like a "saddle"...

- $f(\boldsymbol{w})=w_{1}^{2}+w_{2}^{3}$
- $\nabla f(\boldsymbol{w})=\left(2 w_{1}, 3 w_{2}^{2}\right)$
- so $\boldsymbol{w}=(0,0)$ is stationary
- not local min/max for blue direction ($w_{1}=0$)
- GD gets stuck at $(0,0)$ for any initial point with $w_{2} \geq 0$ and small η

Convergence guarantees - nonconvex objectives

But not all saddle points look like a "saddle"...

- $f(\boldsymbol{w})=w_{1}^{2}+w_{2}^{3}$
- $\nabla f(\boldsymbol{w})=\left(2 w_{1}, 3 w_{2}^{2}\right)$
- so $\boldsymbol{w}=(0,0)$ is stationary
- not local min/max for blue direction $\left(w_{1}=0\right)$
- GD gets stuck at $(0,0)$ for any initial point with $w_{2} \geq 0$ and small η

Even worse, distinguishing local min and saddle point is generally NP-hard.

Convergence guarantees

Summary:

- GD/SGD converges to a stationary point

Convergence guarantees

Summary:

- GD/SGD converges to a stationary point
- for convex objectives, this is all we need

Convergence guarantees

Summary:

- GD/SGD converges to a stationary point
- for convex objectives, this is all we need
- for nonconvex objectives, can get stuck at local minimizers or "bad" saddle points (random initialization escapes "good" saddle points)

Convergence guarantees

Summary:

- GD/SGD converges to a stationary point
- for convex objectives, this is all we need
- for nonconvex objectives, can get stuck at local minimizers or "bad" saddle points (random initialization escapes "good" saddle points)
- recent research shows that many problems have no "bad" saddle points or even "bad" local minimizers

Convergence guarantees

Summary:

- GD/SGD converges to a stationary point
- for convex objectives, this is all we need
- for nonconvex objectives, can get stuck at local minimizers or "bad" saddle points (random initialization escapes "good" saddle points)
- recent research shows that many problems have no "bad" saddle points or even "bad" local minimizers
- justify the practical effectiveness of GD/SGD (default method to try)

Second-order methods

Recall the intuition of GD: we look at first-order Taylor approximation

$$
F(\boldsymbol{w}) \approx F\left(\boldsymbol{w}^{(t)}\right)+\nabla F\left(\boldsymbol{w}^{(t)}\right)^{\mathrm{T}}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right)
$$

Second-order methods

Recall the intuition of GD: we look at first-order Taylor approximation

$$
F(\boldsymbol{w}) \approx F\left(\boldsymbol{w}^{(t)}\right)+\nabla F\left(\boldsymbol{w}^{(t)}\right)^{\mathrm{T}}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right)
$$

What if we look at second-order Taylor approximation?
$F(\boldsymbol{w}) \approx F\left(\boldsymbol{w}^{(t)}\right)+\nabla F\left(\boldsymbol{w}^{(t)}\right)^{\mathrm{T}}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right)+\frac{1}{2}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right)^{\mathrm{T}} \boldsymbol{H}_{t}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right)$

Second-order methods

Recall the intuition of GD: we look at first-order Taylor approximation

$$
F(\boldsymbol{w}) \approx F\left(\boldsymbol{w}^{(t)}\right)+\nabla F\left(\boldsymbol{w}^{(t)}\right)^{\mathrm{T}}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right)
$$

What if we look at second-order Taylor approximation?
$F(\boldsymbol{w}) \approx F\left(\boldsymbol{w}^{(t)}\right)+\nabla F\left(\boldsymbol{w}^{(t)}\right)^{\mathrm{T}}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right)+\frac{1}{2}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right)^{\mathrm{T}} \boldsymbol{H}_{t}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right)$
where $\boldsymbol{H}_{t}=\nabla^{2} F\left(\boldsymbol{w}^{(t)}\right) \in \mathbb{R}^{\mathrm{D} \times \mathrm{D}}$ is the Hessian of F at $\boldsymbol{w}^{(t)}$, i.e.,

$$
H_{t, i j}=\left.\frac{\partial^{2} F(\boldsymbol{w})}{\partial w_{i} \partial w_{j}}\right|_{\boldsymbol{w}=\boldsymbol{w}^{(t)}}
$$

(think "second derivative" when $D=1$)

Newton method

If we minimize the second-order approximation (via "complete the square")

$$
\begin{aligned}
& F(\boldsymbol{w}) \\
& \approx F\left(\boldsymbol{w}^{(t)}\right)+\nabla F\left(\boldsymbol{w}^{(t)}\right)^{\mathrm{T}}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right)+\frac{1}{2}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right)^{\mathrm{T}} \boldsymbol{H}_{t}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right) \\
& =\frac{1}{2}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}+\boldsymbol{H}_{t}^{-1} \nabla F\left(\boldsymbol{w}^{(t)}\right)\right)^{\mathrm{T}} \boldsymbol{H}_{t}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}+\boldsymbol{H}_{t}^{-1} \nabla F\left(\boldsymbol{w}^{(t)}\right)\right)+\mathrm{cnt}
\end{aligned}
$$

Newton method

If we minimize the second-order approximation (via "complete the square")

$$
\begin{aligned}
& F(\boldsymbol{w}) \\
& \approx F\left(\boldsymbol{w}^{(t)}\right)+\nabla F\left(\boldsymbol{w}^{(t)}\right)^{\mathrm{T}}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right)+\frac{1}{2}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right)^{\mathrm{T}} \boldsymbol{H}_{t}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}\right) \\
& =\frac{1}{2}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}+\boldsymbol{H}_{t}^{-1} \nabla F\left(\boldsymbol{w}^{(t)}\right)\right)^{\mathrm{T}} \boldsymbol{H}_{t}\left(\boldsymbol{w}-\boldsymbol{w}^{(t)}+\boldsymbol{H}_{t}^{-1} \nabla F\left(\boldsymbol{w}^{(t)}\right)\right)+\mathrm{cnt}
\end{aligned}
$$

for convex F (so H_{t} is positive semidefinite) we obtain Newton method:

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\boldsymbol{H}_{t}^{-1} \nabla F\left(\boldsymbol{w}^{(t)}\right)
$$

Comparing GD and Newton

$$
\begin{align*}
& \boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta \nabla F\left(\boldsymbol{w}^{(t)}\right) \tag{GD}\\
& \boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\boldsymbol{H}_{t}^{-1} \nabla F\left(\boldsymbol{w}^{(t)}\right)
\end{align*}
$$

(Newton)

Both are iterative optimization procedures,

Comparing GD and Newton

$$
\begin{aligned}
& \boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta \nabla F\left(\boldsymbol{w}^{(t)}\right) \\
& \boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\boldsymbol{H}_{t}^{-1} \nabla F\left(\boldsymbol{w}^{(t)}\right)
\end{aligned}
$$

Both are iterative optimization procedures, but Newton method

- has no learning rate η (so no tuning needed!)

Comparing GD and Newton

$$
\begin{align*}
& \boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta \nabla F\left(\boldsymbol{w}^{(t)}\right) \tag{GD}\\
& \boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\boldsymbol{H}_{t}^{-1} \nabla F\left(\boldsymbol{w}^{(t)}\right)
\end{align*}
$$

(Newton)

Both are iterative optimization procedures, but Newton method

- has no learning rate η (so no tuning needed!)
- converges super fast in terms of \#iterations (for convex objectives)

Comparing GD and Newton

$$
\begin{align*}
& \boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta \nabla F\left(\boldsymbol{w}^{(t)}\right) \tag{GD}\\
& \boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\boldsymbol{H}_{t}^{-1} \nabla F\left(\boldsymbol{w}^{(t)}\right)
\end{align*}
$$

(Newton)

Both are iterative optimization procedures, but Newton method

- has no learning rate η (so no tuning needed!)
- converges super fast in terms of \#iterations (for convex objectives)
- e.g. how many iterations needed when applied to a quadratic?

Comparing GD and Newton

$$
\begin{align*}
& \boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta \nabla F\left(\boldsymbol{w}^{(t)}\right) \tag{GD}\\
& \boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\boldsymbol{H}_{t}^{-1} \nabla F\left(\boldsymbol{w}^{(t)}\right)
\end{align*}
$$

(Newton)

Both are iterative optimization procedures, but Newton method

- has no learning rate η (so no tuning needed!)
- converges super fast in terms of \#iterations (for convex objectives)
- e.g. how many iterations needed when applied to a quadratic?
- computing Hessian in each iteration is very slow though

Comparing GD and Newton

$$
\begin{align*}
& \boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta \nabla F\left(\boldsymbol{w}^{(t)}\right) \tag{GD}\\
& \boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\boldsymbol{H}_{t}^{-1} \nabla F\left(\boldsymbol{w}^{(t)}\right)
\end{align*}
$$

(Newton)

Both are iterative optimization procedures, but Newton method

- has no learning rate η (so no tuning needed!)
- converges super fast in terms of \#iterations (for convex objectives)
- e.g. how many iterations needed when applied to a quadratic?
- computing Hessian in each iteration is very slow though
- does not really make sense for nonconvex objectives (but generally Hessian can be useful for escaping saddle points)

Outline

(1) Linear regression
(2) Linear regression with nonlinear basis
(3) Overfitting and preventing overfitting
4. Linear Classifiers and Surrogate Losses
(5) A Detour of Numerical Optimization Methods
(6) Perceptron
(7) Logistic Regression

Recall the perceptron loss

$$
\begin{aligned}
F(\boldsymbol{w}) & =\frac{1}{N} \sum_{n=1}^{N} \ell_{\text {perceptron }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) \\
& =\frac{1}{N} \sum_{n=1}^{N} \max \left\{0,-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right\}
\end{aligned}
$$

Recall the perceptron loss

$$
\begin{aligned}
F(\boldsymbol{w}) & =\frac{1}{N} \sum_{n=1}^{N} \ell_{\text {perceptron }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) \\
& =\frac{1}{N} \sum_{n=1}^{N} \max \left\{0,-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right\}
\end{aligned}
$$

Let's approximately minimize it with GD/SGD.

Applying GD to perceptron loss

Objective

$$
F(\boldsymbol{w})=\frac{1}{N} \sum_{n=1}^{N} \max \left\{0,-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right\}
$$

Applying GD to perceptron loss

Objective

$$
F(\boldsymbol{w})=\frac{1}{N} \sum_{n=1}^{N} \max \left\{0,-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right\}
$$

Gradient (or really sub-gradient) is

$$
\nabla F(\boldsymbol{w})=\frac{1}{N} \sum_{n=1}^{N}-\mathbb{I}\left[y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n} \leq 0\right] y_{n} \boldsymbol{x}_{n}
$$

(only misclassified examples contribute to the gradient)

Applying GD to perceptron loss

Objective

$$
F(\boldsymbol{w})=\frac{1}{N} \sum_{n=1}^{N} \max \left\{0,-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right\}
$$

Gradient (or really sub-gradient) is

$$
\nabla F(\boldsymbol{w})=\frac{1}{N} \sum_{n=1}^{N}-\mathbb{I}\left[y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n} \leq 0\right] y_{n} \boldsymbol{x}_{n}
$$

(only misclassified examples contribute to the gradient)
GD update

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+\frac{\eta}{N} \sum_{n=1}^{N} \mathbb{I}\left[y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n} \leq 0\right] y_{n} \boldsymbol{x}_{n}
$$

Applying GD to perceptron loss

Objective

$$
F(\boldsymbol{w})=\frac{1}{N} \sum_{n=1}^{N} \max \left\{0,-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right\}
$$

Gradient (or really sub-gradient) is

$$
\nabla F(\boldsymbol{w})=\frac{1}{N} \sum_{n=1}^{N}-\mathbb{I}\left[y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n} \leq 0\right] y_{n} \boldsymbol{x}_{n}
$$

(only misclassified examples contribute to the gradient)
GD update

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+\frac{\eta}{N} \sum_{n=1}^{N} \mathbb{I}\left[y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n} \leq 0\right] y_{n} \boldsymbol{x}_{n}
$$

Slow: each update makes one pass of the entire training set!

Applying SGD to perceptron loss

How to construct a stochastic gradient?

Applying SGD to perceptron loss

How to construct a stochastic gradient?
One common trick: pick one example $n \in[N]$ uniformly at random, let

$$
\tilde{\nabla} F\left(\boldsymbol{w}^{(t)}\right)=-\mathbb{I}\left[y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n} \leq 0\right] y_{n} \boldsymbol{x}_{n}
$$

clearly unbiased (convince yourself).

Applying SGD to perceptron loss

How to construct a stochastic gradient?
One common trick: pick one example $n \in[N]$ uniformly at random, let

$$
\tilde{\nabla} F\left(\boldsymbol{w}^{(t)}\right)=-\mathbb{I}\left[y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n} \leq 0\right] y_{n} \boldsymbol{x}_{n}
$$

clearly unbiased (convince yourself).
SGD update:

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+\eta \mathbb{I}\left[y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n} \leq 0\right] y_{n} \boldsymbol{x}_{n}
$$

Applying SGD to perceptron loss

How to construct a stochastic gradient?
One common trick: pick one example $n \in[N]$ uniformly at random, let

$$
\tilde{\nabla} F\left(\boldsymbol{w}^{(t)}\right)=-\mathbb{I}\left[y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n} \leq 0\right] y_{n} \boldsymbol{x}_{n}
$$

clearly unbiased (convince yourself).
SGD update:

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+\eta \mathbb{I}\left[y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n} \leq 0\right] y_{n} \boldsymbol{x}_{n}
$$

Fast: each update touches only one data point!

Applying SGD to perceptron loss

How to construct a stochastic gradient?
One common trick: pick one example $n \in[N]$ uniformly at random, let

$$
\tilde{\nabla} F\left(\boldsymbol{w}^{(t)}\right)=-\mathbb{I}\left[y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n} \leq 0\right] y_{n} \boldsymbol{x}_{n}
$$

clearly unbiased (convince yourself).
SGD update:

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+\eta \mathbb{I}\left[y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n} \leq 0\right] y_{n} \boldsymbol{x}_{n}
$$

Fast: each update touches only one data point!
Conveniently, objective of most ML tasks is a finite sum (over each training point) and the above trick applies!

The Perceptron Algorithm

Perceptron algorithm is SGD with $\eta=1$ applied to perceptron loss:

The Perceptron Algorithm

Perceptron algorithm is SGD with $\eta=1$ applied to perceptron loss:
Repeat:

- Pick a data point \boldsymbol{x}_{n} uniformly at random
- If $\operatorname{sgn}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) \neq y_{n}$

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+y_{n} \boldsymbol{x}_{n}
$$

The Perceptron Algorithm

Perceptron algorithm is SGD with $\eta=1$ applied to perceptron loss:
Repeat:

- Pick a data point \boldsymbol{x}_{n} uniformly at random
- If $\operatorname{sgn}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) \neq y_{n}$

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+y_{n} \boldsymbol{x}_{n}
$$

Note:

- \boldsymbol{w} is always a linear combination of the training examples

The Perceptron Algorithm

Perceptron algorithm is SGD with $\eta=1$ applied to perceptron loss:
Repeat:

- Pick a data point \boldsymbol{x}_{n} uniformly at random
- If $\operatorname{sgn}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) \neq y_{n}$

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+y_{n} \boldsymbol{x}_{n}
$$

Note:

- \boldsymbol{w} is always a linear combination of the training examples
- why $\eta=1$? Does not really matter in terms of prediction of \boldsymbol{w}

Why does it make sense?

If the current weight \boldsymbol{w} makes a mistake

$$
y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}<0
$$

Why does it make sense?

If the current weight \boldsymbol{w} makes a mistake

$$
y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}<0
$$

then after the update $\boldsymbol{w}^{\prime}=\boldsymbol{w}+y_{n} \boldsymbol{x}_{n}$ we have

$$
y_{n} \boldsymbol{w}^{\prime \mathrm{T}} \boldsymbol{x}_{n}=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}+y_{n}^{2} \boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{x}_{n} \geq y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}
$$

Why does it make sense?

If the current weight \boldsymbol{w} makes a mistake

$$
y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}<0
$$

then after the update $\boldsymbol{w}^{\prime}=\boldsymbol{w}+y_{n} \boldsymbol{x}_{n}$ we have

$$
y_{n} \boldsymbol{w}^{\prime \mathrm{T}} \boldsymbol{x}_{n}=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}+y_{n}^{2} \boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{x}_{n} \geq y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}
$$

Thus it is more likely to get it right after the update.

Any theory?

(HW 1) If training set is linearly separable

- Perceptron converges in a finite number of steps
- training error is 0

Any theory?

(HW 1) If training set is linearly separable

- Perceptron converges in a finite number of steps
- training error is 0

There are also guarantees when the data are not linearly separable.

Outline

(1) Linear regression
(2) Linear regression with nonlinear basis
(3) Overfitting and preventing overfitting
4. Linear Classifiers and Surrogate Losses
(5) A Detour of Numerical Optimization Methods

6 Perceptron
(7) Logistic Regression

A simple view

In one sentence: find the minimizer of

$$
\begin{aligned}
F(\boldsymbol{w}) & =\frac{1}{N} \sum_{n=1}^{N} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) \\
& =\frac{1}{N} \sum_{n=1}^{N} \ln \left(1+e^{-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right)
\end{aligned}
$$

A simple view

In one sentence: find the minimizer of

$$
\begin{aligned}
F(\boldsymbol{w}) & =\frac{1}{N} \sum_{n=1}^{N} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) \\
& =\frac{1}{N} \sum_{n=1}^{N} \ln \left(1+e^{-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right)
\end{aligned}
$$

Before optimizing it: why logistic loss? and why "regression"?

Predicting probability

Instead of predicting a discrete label, can we predict the probability of each label? i.e. regress the probabilities

Predicting probability

Instead of predicting a discrete label, can we predict the probability of each label? i.e. regress the probabilities

One way: sigmoid function + linear model

$$
\mathbb{P}(y=+1 \mid \boldsymbol{x} ; \boldsymbol{w})=\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)
$$

where σ is the sigmoid function:

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

Properties

Properties of sigmoid $\sigma(z)=\frac{1}{1+e^{-z}}$

- between 0 and 1 (good as probability)

Properties

Properties of sigmoid $\sigma(z)=\frac{1}{1+e^{-z}}$

- between 0 and 1 (good as probability)
- $\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right) \geq 0.5 \Leftrightarrow \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \geq 0$, consistent with predicting the label with $\operatorname{sgn}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)$

Properties

Properties of sigmoid $\sigma(z)=\frac{1}{1+e^{-z}}$

- between 0 and 1 (good as probability)
- $\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right) \geq 0.5 \Leftrightarrow \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \geq 0$, consistent with predicting the label with $\operatorname{sgn}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)$
- larger $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \Rightarrow$ larger $\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right) \Rightarrow$ higher confidence in label 1

Properties

Properties of sigmoid $\sigma(z)=\frac{1}{1+e^{-z}}$

- between 0 and 1 (good as probability)
- $\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right) \geq 0.5 \Leftrightarrow \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \geq 0$, consistent with predicting the label with $\operatorname{sgn}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)$
- larger $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \Rightarrow$ larger $\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right) \Rightarrow$ higher confidence in label 1

- $\sigma(z)+\sigma(-z)=1$ for all z

Properties

Properties of sigmoid $\sigma(z)=\frac{1}{1+e^{-z}}$

- between 0 and 1 (good as probability)
- $\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right) \geq 0.5 \Leftrightarrow \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \geq 0$, consistent with predicting the label with $\operatorname{sgn}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)$
- larger $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \Rightarrow$ larger $\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right) \Rightarrow$ higher confidence in label 1

- $\sigma(z)+\sigma(-z)=1$ for all z

The probability of label -1 is naturally

$$
1-\mathbb{P}(y=+1 \mid \boldsymbol{x} ; \boldsymbol{w})=1-\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)=\sigma\left(-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)
$$

Properties

Properties of sigmoid $\sigma(z)=\frac{1}{1+e^{-z}}$

- between 0 and 1 (good as probability)
- $\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right) \geq 0.5 \Leftrightarrow \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \geq 0$, consistent with predicting the label with $\operatorname{sgn}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)$
- larger $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \Rightarrow$ larger $\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right) \Rightarrow$ higher confidence in label 1

- $\sigma(z)+\sigma(-z)=1$ for all z

The probability of label -1 is naturally

$$
1-\mathbb{P}(y=+1 \mid \boldsymbol{x} ; \boldsymbol{w})=1-\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)=\sigma\left(-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)
$$

and thus

$$
\mathbb{P}(y \mid \boldsymbol{x} ; \boldsymbol{w})=\sigma\left(y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)=\frac{1}{1+e^{-y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}}
$$

How to regress with discrete labels?

What we observe are labels, not probabilities.

How to regress with discrete labels?

What we observe are labels, not probabilities.
Take a probabilistic view

- assume data is independently generated in this way by some \boldsymbol{w}
- perform Maximum Likelihood Estimation (MLE)

How to regress with discrete labels?

What we observe are labels, not probabilities.
Take a probabilistic view

- assume data is independently generated in this way by some \boldsymbol{w}
- perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y_{1}, \cdots, y_{n} given x_{1}, \cdots, x_{n}, as a function of some \boldsymbol{w} ?

$$
P(\boldsymbol{w})=\prod_{n=1}^{N} \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{\boldsymbol{n}} ; \boldsymbol{w}\right)
$$

MLE: find \boldsymbol{w}^{*} that maximizes the probability $P(\boldsymbol{w})$

The MLE solution

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w}}{\operatorname{argmax}} P(\boldsymbol{w})=\underset{\boldsymbol{w}}{\operatorname{argmax}} \prod_{n=1}^{N} \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{\boldsymbol{n}} ; \boldsymbol{w}\right)
$$

The MLE solution

$$
\begin{aligned}
\boldsymbol{w}^{*} & =\underset{\boldsymbol{w}}{\operatorname{argmax}} P(\boldsymbol{w})=\underset{\boldsymbol{w}}{\operatorname{argmax}} \prod_{n=1}^{N} \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{\boldsymbol{n}} ; \boldsymbol{w}\right) \\
& =\underset{\boldsymbol{w}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{\boldsymbol{n}} ; \boldsymbol{w}\right)
\end{aligned}
$$

The MLE solution

$$
\begin{aligned}
\boldsymbol{w}^{*} & =\underset{\boldsymbol{w}}{\operatorname{argmax}} P(\boldsymbol{w})=\underset{\boldsymbol{w}}{\operatorname{argmax}} \prod_{n=1}^{N} \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{\boldsymbol{n}} ; \boldsymbol{w}\right) \\
& =\underset{\boldsymbol{w}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{\boldsymbol{n}} ; \boldsymbol{w}\right)=\underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{n=1}^{N}-\ln \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{\boldsymbol{n}} ; \boldsymbol{w}\right)
\end{aligned}
$$

The MLE solution

$$
\begin{aligned}
\boldsymbol{w}^{*} & =\underset{\boldsymbol{w}}{\operatorname{argmax}} P(\boldsymbol{w})=\underset{\boldsymbol{w}}{\operatorname{argmax}} \prod_{n=1}^{N} \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{\boldsymbol{n}} ; \boldsymbol{w}\right) \\
& =\underset{\boldsymbol{w}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{\boldsymbol{n}} ; \boldsymbol{w}\right)=\underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{n=1}^{N}-\ln \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{\boldsymbol{n}} ; \boldsymbol{w}\right) \\
& =\underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \ln \left(1+e^{-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{\boldsymbol{n}}}\right)
\end{aligned}
$$

The MLE solution

$$
\begin{aligned}
\boldsymbol{w}^{*} & =\underset{\boldsymbol{w}}{\operatorname{argmax}} P(\boldsymbol{w})=\underset{\boldsymbol{w}}{\operatorname{argmax}} \prod_{n=1}^{N} \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{\boldsymbol{n}} ; \boldsymbol{w}\right) \\
& =\underset{\boldsymbol{w}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{\boldsymbol{n}} ; \boldsymbol{w}\right)=\underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{n=1}^{N}-\ln \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{\boldsymbol{n}} ; \boldsymbol{w}\right) \\
& =\underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \ln \left(1+e^{-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{\boldsymbol{n}}}\right)=\underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)
\end{aligned}
$$

The MLE solution

$$
\begin{aligned}
\boldsymbol{w}^{*} & =\underset{\boldsymbol{w}}{\operatorname{argmax}} P(\boldsymbol{w})=\underset{\boldsymbol{w}}{\operatorname{argmax}} \prod_{n=1}^{N} \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{\boldsymbol{n}} ; \boldsymbol{w}\right) \\
& =\underset{\boldsymbol{w}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{\boldsymbol{n}} ; \boldsymbol{w}\right)=\underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{n=1}^{N}-\ln \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{\boldsymbol{n}} ; \boldsymbol{w}\right) \\
& =\underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \ln \left(1+e^{-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{\boldsymbol{n}}}\right)=\underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) \\
& =\underset{\boldsymbol{w}}{\operatorname{argmin}} F(\boldsymbol{w})
\end{aligned}
$$

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!

Let's apply SGD again

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}-\eta \tilde{\nabla} F(\boldsymbol{w})
$$

Let's apply SGD again

$$
\begin{aligned}
\boldsymbol{w} & \leftarrow \boldsymbol{w}-\eta \tilde{\nabla} F(\boldsymbol{w}) \\
& =\boldsymbol{w}-\eta \nabla_{\boldsymbol{w}} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)
\end{aligned}
$$

$$
(n \in[N] \text { is drawn u.a.r. })
$$

Let's apply SGD again

$$
\begin{aligned}
\boldsymbol{w} & \leftarrow \boldsymbol{w}-\eta \tilde{\nabla} F(\boldsymbol{w}) \\
& =\boldsymbol{w}-\eta \nabla_{\boldsymbol{w}} \operatorname{logisstic~}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) \quad(n \in[N] \text { is drawn u.a.r. }) \\
& =\boldsymbol{w}-\eta\left(\left.\frac{\partial \ell_{\text {logistic }}(z)}{\partial z}\right|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) y_{n} \boldsymbol{x}_{n}
\end{aligned}
$$

Let's apply SGD again

$$
\begin{aligned}
\boldsymbol{w} & \leftarrow \boldsymbol{w}-\eta \tilde{\nabla} F(\boldsymbol{w}) \\
& =\boldsymbol{w}-\eta \nabla_{\boldsymbol{w}} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) \quad(n \in[N] \text { is drawn u.a.r. }) \\
& =\boldsymbol{w}-\eta\left(\left.\frac{\partial \ell_{\text {logistic }}(z)}{\partial z}\right|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) y_{n} \boldsymbol{x}_{n} \\
& =\boldsymbol{w}-\eta\left(\left.\frac{-e^{-z}}{1+e^{-z}}\right|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) y_{n} \boldsymbol{x}_{n}
\end{aligned}
$$

Let's apply SGD again

$$
\begin{aligned}
\boldsymbol{w} & \leftarrow \boldsymbol{w}-\eta \tilde{\nabla} F(\boldsymbol{w}) \\
& =\boldsymbol{w}-\eta \nabla_{\boldsymbol{w}^{\ell} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) \quad(n \in[N] \text { is drawn u.a.r. })} \\
& =\boldsymbol{w}-\eta\left(\left.\frac{\partial \ell_{\text {logistic }}(z)}{\partial z}\right|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) y_{n} \boldsymbol{x}_{n} \\
& =\boldsymbol{w}-\eta\left(\left.\frac{-e^{-z}}{1+e^{-z}}\right|_{z=y_{n}} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) y_{n} \boldsymbol{x}_{n} \\
& =\boldsymbol{w}+\eta \sigma\left(-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) y_{n} \boldsymbol{x}_{n}
\end{aligned}
$$

Let's apply SGD again

$$
\begin{aligned}
\boldsymbol{w} & \leftarrow \boldsymbol{w}-\eta \tilde{\nabla} F(\boldsymbol{w}) \\
& =\boldsymbol{w}-\eta \nabla_{\boldsymbol{w}} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) \quad(n \in[N] \text { is drawn u.a.r. }) \\
& =\boldsymbol{w}-\eta\left(\left.\frac{\partial \ell_{\text {logistic }}(z)}{\partial z}\right|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) y_{n} \boldsymbol{x}_{n} \\
& =\boldsymbol{w}-\eta\left(\left.\frac{-e^{-z}}{1+e^{-z}}\right|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) y_{n} \boldsymbol{x}_{n} \\
& =\boldsymbol{w}+\eta \sigma\left(-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) y_{n} \boldsymbol{x}_{n} \\
& =\boldsymbol{w}+\eta \mathbb{P}\left(-y_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{w}\right) y_{n} \boldsymbol{x}_{n}
\end{aligned}
$$

Let's apply SGD again

$$
\begin{aligned}
\boldsymbol{w} & \leftarrow \boldsymbol{w}-\eta \tilde{\nabla} F(\boldsymbol{w}) \\
& =\boldsymbol{w}-\eta \nabla_{\boldsymbol{w}} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) \quad(n \in[N] \text { is drawn u.a.r. }) \\
& =\boldsymbol{w}-\eta\left(\left.\frac{\partial \ell_{\text {logistic }}(z)}{\partial z}\right|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) y_{n} \boldsymbol{x}_{n} \\
& =\boldsymbol{w}-\eta\left(\left.\frac{-e^{-z}}{1+e^{-z}}\right|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) y_{n} \boldsymbol{x}_{n} \\
& =\boldsymbol{w}+\eta \sigma\left(-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) y_{n} \boldsymbol{x}_{n} \\
& =\boldsymbol{w}+\eta \mathbb{P}\left(-y_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{w}\right) y_{n} \boldsymbol{x}_{n}
\end{aligned}
$$

This is a soft version of Perceptron!
$\mathbb{P}\left(-y_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{w}\right)$ versus $\mathbb{I}\left[y_{n} \neq \operatorname{sgn}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)\right]$

Applying Newton to logistic loss

$$
\nabla_{\boldsymbol{w}} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)=-\sigma\left(-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) y_{n} \boldsymbol{x}_{n}
$$

Applying Newton to logistic loss

$$
\begin{array}{r}
\nabla_{\boldsymbol{w}} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)=-\sigma\left(-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) y_{n} \boldsymbol{x}_{n} \\
\nabla_{\boldsymbol{w}}^{2} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)=\left(\left.\frac{\partial \sigma(z)}{\partial z}\right|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) y_{n}^{2} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}}
\end{array}
$$

Applying Newton to logistic loss

$$
\begin{aligned}
& \nabla_{\boldsymbol{w}} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)=-\sigma\left(-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) y_{n} \boldsymbol{x}_{n} \\
& \nabla_{\boldsymbol{w}}^{2} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)=\left(\left.\frac{\partial \sigma(z)}{\partial z}\right|_{z=-y_{n}} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) y_{n}^{2} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\
&=\left(\left.\frac{e^{-z}}{\left(1+e^{-z}\right)^{2}}\right|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}}
\end{aligned}
$$

Applying Newton to logistic loss

$$
\nabla_{\boldsymbol{w}} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)=-\sigma\left(-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) y_{n} \boldsymbol{x}_{n}
$$

$$
\begin{aligned}
\nabla_{\boldsymbol{w}}^{2} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) & =\left(\left.\frac{\partial \sigma(z)}{\partial z}\right|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) y_{n}^{2} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\
& =\left(\left.\frac{e^{-z}}{\left(1+e^{-z}\right)^{2}}\right|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\
& =\sigma\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)\left(1-\sigma\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)\right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}}
\end{aligned}
$$

Applying Newton to logistic loss

$$
\begin{aligned}
& \nabla_{\boldsymbol{w}} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)=-\sigma\left(-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) y_{n} \boldsymbol{x}_{n} \\
& \nabla_{\boldsymbol{w}}^{2} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)=\left(\left.\frac{\partial \sigma(z)}{\partial z}\right|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) y_{n}^{2} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\
& =\left(\left.\frac{e^{-z}}{\left(1+e^{-z}\right)^{2}}\right|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\
& =\sigma\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)\left(1-\sigma\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)\right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}}
\end{aligned}
$$

Exercises:

- why is the Hessian of logistic loss positive semidefinite?

Applying Newton to logistic loss

$$
\begin{aligned}
& \nabla_{\boldsymbol{w}} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)=-\sigma\left(-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) y_{n} \boldsymbol{x}_{n} \\
& \nabla_{\boldsymbol{w}}^{2} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)=\left(\left.\frac{\partial \sigma(z)}{\partial z}\right|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) y_{n}^{2} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\
& =\left(\left.\frac{e^{-z}}{\left(1+e^{-z}\right)^{2}}\right|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\
& =\sigma\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)\left(1-\sigma\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)\right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}}
\end{aligned}
$$

Exercises:

- why is the Hessian of logistic loss positive semidefinite?
- can we apply Newton method to perceptron/hinge loss?

