
CSCI 567 - Programming Assignment 3

Exercise 1: PCA and EM
The starter code for both parts of Exercise 1 can be accessed at this link with your school email
address. It should also be fairly easy to code both ideas entirely from scratch—and please feel
free to work on a dataset/distribution you are especially interested in! The ones provided are just
obvious points :)

1. PCA image compression - In this exercise, you will be implementing Principal
Component Analysis (PCA) from scratch (or, well… numpy) to compress and
decompress images of handwritten digits from the MNIST dataset. You will start by
normalizing the data, followed by computing the covariance matrix and its eigenvalues
and eigenvectors. By sorting the eigenvectors and selecting the top principal
components, you will project the data onto a lower-dimensional space, effectively
compressing the images. Finally, you will reconstruct the images from the compressed
data and compare them to the original images to observe the effects of PCA
compression. Play around with different quantities of principal components to observe
their effect on the decompressed data.

2. Expectation maximization - In this exercise, you will be implementing and comparing
two clustering algorithms: the Expectation-Maximization (EM) algorithm for Gaussian
Mixture Models (GMMs) and the K-Means algorithm. For the GMM part, you will
generate synthetic data from multiple Gaussian distributions, initialize the parameters of
the GMM, and then iteratively update them by alternating between the E-step, where you
calculate the responsibilities of each Gaussian for each data point, and the M-step,
where you update the parameters based on the calculated responsibilities. In the
K-Means part, you will initialize cluster centers, assign each data point to the nearest
center, and then update the centers to minimize the within-cluster variance. By
comparing the results of the two algorithms, you will gain insights into their similarities
and differences, and understand how they perform in clustering data with different
shapes and sizes.

Exercise 2: Implementing and training VAEs
In this exercise, you’ll be implementing a Variational Autoencoder (VAE) in PyTorch and training
it on the MNIST dataset. VAEs were briefly covered in the 10/20 discussion section (see the
course website for related slides), and the goal with this question is to quickly get some
hands-on experience with the model architecture. You can find starter code at this link, which
provides most of the needed boilerplate (e.g., setting up the dataset, training loop, etc).

https://drive.google.com/drive/folders/1NYWScfsLrXIekpVs0M4oHYL_BowsZvY4?usp=sharing
https://drive.google.com/drive/folders/1fvyVnxuB7PtRXfFISekR6e4NICZDdDhq?usp=sharing

